Instruction Manual DOPSMD54161XEN2

Rev. A

ER3000 Kit

ER3000 Kits

CONTENTS

1	INTRODUCTION	Z
2	SAFETY INSTRUCTIONS	2
3	PRODUCT DESCRIPTION	2
4	TECHNICAL DATA	4
5	INSTALLATION	6
6	WIRING	8
6.1	GENERAL WIRING	8
6.2	WITH JUNCTION BOX	9
7	MAINTENANCE	10
8	TUNING ER3000	11
8.1	PID CONTROL -SYSTEM RESPONSE 1	ГОА
	STEP CHANGE IN SETPOINT	16
8.2	PID CONTROL	16
8.3	SAVING DATA	
8.4	DATA AQUISITION	17

9	ER3000 TROUBLESHOOTING	18
9.1	SYSTEM TROUBLESHOOTING	18
9.2	LEAK PATHS	19
9.3	ISOLATE MECHANICAL FROM	
	ELECTRICAL	22
9.4	DEBUG WINDOW	22
10	DRAWINGS	24
11	PARTS LIST	36
12	APPENDIX	37
12.1	PRESSURE TRANSDUCER	37
12.2	RS232-485 CONVERTER	41

Instruction Manual DOPSMD54161XEN2

Rev. A

ER3000 Kit

1 Introduction

This manual is valid only for ER3000 Kits I & II of the type ER3P and ER3B. The instructions for individual components must also be considered and are either attached in the appendix or supplied separately.

These instructions are important for all personnel who install, operate and maintain this equipment. It is assumed only qualified personnel with knowledge of the general safety rules and handling procedures of pressurized fluids and pressure equipment will perform this work. Ensure the availability of this manual to these personnel.

2 Safety Instructions

WARNING! Do not attempt to select, install, use or maintain this product until you have read and fully understood the TESCOM Safety, Installation & Operation Precautions.

3 Product Description

The ER3000 Kits are designed to ease the procurement, setup and installation of the basic equipment needed for the most common pressure reducing and back pressure control applications. All the necessary components are supplied in one kit to save the user time and the inconvenience of not having all the accessories and interconnections needed to get the system up and running.

The heart of the kit is the ER3000, a unique and flexible electropneumatic closed loop PID controller. The pneumatic output of the ER3000 loads the dome or air-actuator of a mechanical regulator. The pressure at the control port of the mechanical regulator is measured by a transducer and fed back to the ER3000, which instantly compares the feedback to the set point and makes the necessary adjustments.

Kit Benefits:

Very high pressure stability

- pressure is independent of the flow (eliminates droop)
- pressure is independent of the input pressure (eliminates decaying inlet effect)

Automation

- pressure can be controlled by a signal from a PC or PLC
- easy integration into automated test cycles

Data Acquisition

- Pressure data can be transferred to the computer without additional hardware
- Windows Tune program includes a data acquisition routine

Kit Level of Integration

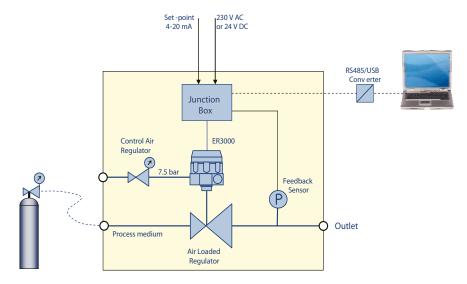
The kits are available in two levels of integration:

Kit I:

Individual components selected to meet the application's pressure control requirements. The ER3000 is preconfigured with typical PID parameters established for the selected regulator. Installation and set-up of the equipment is the responsibility of the customer.

Kit II:

Components of Kit I mounted on a back-plane and professionally plumbed together. Version with a sturdy, industrial enclosure also available. All electrical connections are made via junction box. The system is factory leak and performance tested and the ER3000 PID parameters are pre-set for this system.



Instruction Manual DOPSMD54161XEN2

Rev. A ER3000 Kit

Typical Pressure Reducing Application

With both kits, the customer has a choice of the most versatile mechanical regulators to cover a wide range of applications, both pressure reducing and back pressure, with a selection of the most common sealing materials.

The set point can be either an analog 4 - 20 mA or 1 - 5 volt signal or an RS485 serial signal from a computer. A converter to change the signal to RS485 from RS232 or USB is available with the kit. The PID parameters can be fine tuned using the supplied Tescom software loaded on the PC. In the case of an analog set point, the PC connection is needed only once for optimizing the PID parameters.

Regulator families

Pressure Rec	lucing Regulators
26-2000	High pressure regulator to control various output ranges up to 10,000 psig/690 bar, segregated captured vent. Available in SST and brass with a wide selection of seat and O-Ring materials
DK	Highly accurate and sensitive regulator with captured vent for low pressure (90 psig/6 bar) or mid range applications (600 psig/40 bar) requiring significant flow capabilities. Available in SST and brass.
44-5200	Piston sensed, venting regulator for mid-pressure range, low flow applications (600 psig/40 bar). Available in SST and brass.
Flow booster	Low pressure (90 psig/6 bar), high flow diaphragm regulator for air or nitrogen service. Zinc body.
Back Pressur	re Regulators
26-1700	High pressure regulator to control various back-pressure ranges up to 10,000 psig/690 bar. Available in SST only with a wide selection of seat and O-Ring materials
54-2100	High pressure regulator to control various back-pressure ranges up to 10,000 psig/690 bar. Specially designed for hydraulic applications (metal seat), available in SST only.

Instruction Manual DOPSMD54161XEN2 Rev. A

ER3000 Kit

Accessories:

The Kits are shipped with all the accessories needed for easy installation:

- 4 20 mAmp Feedback Transducer with 1/4" NPT port
- Pressure reducing regulator with gage to supply air to the ER3000.
- Set of commonly used assembly items:
 - 8/32 UNC Mounting screws
 - · ER vent port muffler
 - T-piece for transducer
 - · NPT connector for ER3000 to air loader
 - · NPT plug and cable strain relief
- ER3000 cable
- Transducer cable
- · Optional junction box with power supply for easy connection of the ER3000, transducer and setpoint source
- · Converter options of USB or RS232.

4 Technical Data

Dash Code	Regulator Series	Transducer pressure range psig/bar	Max. Input Pressure psi/bar	Flow Coefficients	Body Material	Temperature °F (°C)	Venting	Weight approx. lbs. (kg)
ER3P-X F	Pressure Reduc	ing Regulators	5	•				
А	Flow Booster	0 - 100/ 0 - 6	200/20	Cv: 1.5	Zinc	39 to 118 (+4 to +48)	yes	1.6 (0.75)
В	Flow Booster	0 - 100/ 0 - 6	300/20	Cv: 2.5	Zinc	39 to 118 (+4 to +48)	yes	1.6 (0.75)
С	DK, dome loaded	0 - 100/ 0 - 6	4000/70	Cv: 0.35	Brass	-4 to 163 (-20 to +73)	yes captured	3.9 (1.8)
D	DK, air loaded	0 - 100/ 0 - 6	1000/70	Cv: 0.35	Brass	-4 to 163 (-20 to +73)	yes captured	6.2 (2.8)
Е	44-5200	0 - 500/ 0 - 40	3500/240	Cv: 0.15	Brass SST	-13 to 199 (-25 to +93)	yes	4.4 (2.0)
F	26-2000	0 - 1000/ 0 - 100		Cv: 0.06	Brass SST	-13 to 199 (-25 to +93)	yes captured	7.7 (3.5)
G	26-2000	0 - 2000/ 0 - 160	Brass: 6000/414	Cv: 0.06	Brass SST	-13 to 199 (-25 to +93)	yes captured	7.7 (3.5)
Н	26-2000	0 - 5000/ 0 - 400	SST: 10,000/690	Cv: 0.06	Brass SST	-13 to 199 (-25 to +93)	yes captured	7.7 (3.5)
J	26-2000	0 - 10,000/ 0 - 600		Cv: 0.06	Brass SST	-13 to 199 (-25 to +93)	yes captured	7.7 (3.5)

Instruction Manual DOPSMD54161XEN2

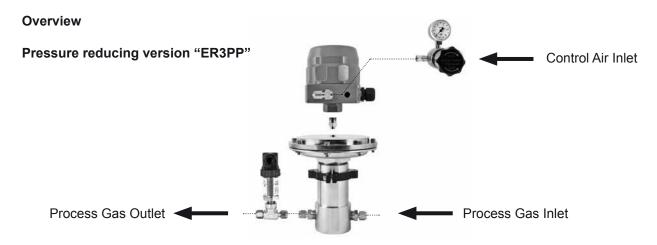
Rev. A ER3000 Kit

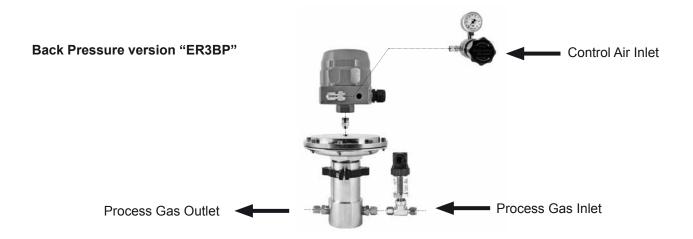
Dash Code	Regulator Series	Transducer psig/bar	Max. Input Pressure psig/bar	Flow Coefficients	Body Material	Temperature °F (°C)	Venting	Weight approx. lbs. (kg)
ER3B-X	Back Pressure	Regulators						
Α	26-2100	1450/100		Cv: 0.08	SST	-13 to 165 (-25 to +74)	NA	7 (3.2)
В	26-2100	2320/160		Cv: 0.08	SST	-13 to 165 (-25 to +74)	NA	7 (3.2)
С	26-2100	5800/400		Cv: 0.08	SST	-13 to 165 (-25 to +74)	NA	7 (3.2)
D	26-2100	8700/600	40.000/000	Cv: 0.08	SST	-13 to 165 (-25 to +74)	NA	7 (3.2)
F	26-1700	1450/100	10,000/690	Cv: 0.14	SST	-40 to 165 (-40 to +74)	NA	7 (3.2)
G	26-1700	2320/160		Cv: 0.10	SST	-40 to 165 (-40 to +74)	NA	7 (3.2)
Н	26-1700	5800/400		Cv: 0.10	SST	-40 to 165 (-40 to +74)	NA	7 (3.2)
J	26-1700	8700/600		Cv: 0.10	SST	-40 to 165 (-40 to +74)	NA	7 (3.2)

Specifications

ER3000	
Power supply	24 V DC (22V to 28V) 180 mA Nominal
Supply Media	Clean, dry, inert gases or shop air
Supply Pressure	110 psig/7.5 bar nominal, maximum 120 psig/8.0 bar
Input signals	Set Point: 4-20 mA, 1-5 V or digitally RS485 Feedback: 4-20 mA, 1-5 V
Housing	NEMA 4X / IP64 weight 1 kg
	Please see ER3000 User Manual for additional specifications
All Regulators	See Individual Drawings for regulator specifications
Pressure Transdu	icer
Output Signal	4 - 20 mAmp, 1 - 5 V DC
Accuracy	0.25% or 0.1%
Connection	1/4" NPT
Power Supply	24 V DC, connector: 175301-803A
Housing	NEMA4X / IP65, weight: 0.3 kg

Instruction Manual DOPSMD54161XEN2


JPSMD54161XEN2 Rev. A


ER3000 Kit

Installation

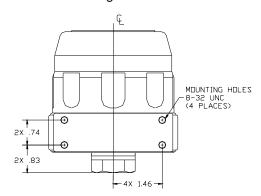
5

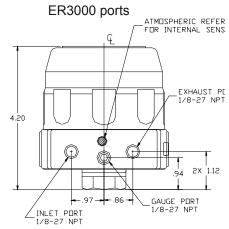
<u>Warning:</u> Installation of pressure components should only be performed by trained personnel. All national and international rules and regulations must be followed.

Mechanical Regulator

Install the mechanical pressure regulator as required by your application. Make sure that the tubing is thoroughly cleaned and that no chips or debris can reach the regulator valve. A 40 μ m filter is recommended to be installed in the inlet path.

Inlet and outlet ports are laser marked on the body of the regulator.




Instruction Manual DOPSMD54161XEN2 Rev. A

ER3000 Kit

ER3000

ER3000 mounting holes

The ER3000 can be installed either directly on top of the regulator's air loader using the supplied adapter or using tubing between ER3000 outlet and regulator dome/air loader.

- Length between the ER and the dome of the regulator should be as short as possible as the length increases, so does the response time.
- Tubing between the ER and regulator must be able to handle up to 120 psig/8.5 bar.
- The ER can be oriented in any position.
- Connect ER3000 inlet port (NPT 1/8") to the air supply (direct shop air or control air regulator). Tubing must be able to handle up to 120 psig/8.5 bar.
- Installation of a 40 µm filter is recommended on the inlet of the ER3000.
- The supplied muffler may be installed in the ER exhaust port (NPT 1/8") if desired.

Transducer

Connect transducer on the control port of the regulator using the supplied T-piece

The position of the transducer should be close to the regulator for a fast regulator response (no delay time). If the response time is not critical to the application, the transducer can be mounted close to the point of use.

Wiring

Wiring is simplified using the Junction Box, minimizing noise problems caused by long, messy cable lengths. For details see chapter on "Wiring". When installing, consider the following:

- Mount Junction Box close to the ER3000.
- Run the ER cable to the junction box, feeding it through the strain relief marked ER. Shorten cable as needed and connect to terminal strip.
- Run the transducer cable to the junction box, feeding it through the strain relief marked Transducer. Shorten cable as needed and connect to terminal strip.
- Connect power supply to the appropriate source.
- Analog control: Connect set point signal to the junction box.
 Serial control: Connect RS485 cable to the junction box and the appropriate computer port.
 See Section 6 for wiring details.

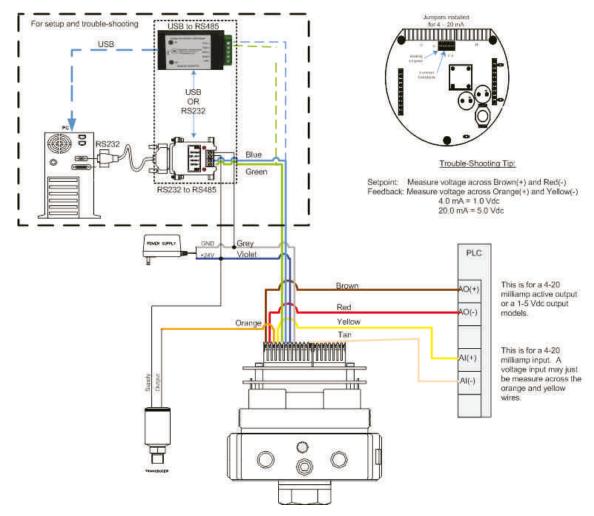
Instruction Manual DOPSMD54161XEN2

Rev. A

ER3000 Kit

System Leak Check

- Switch on the ER3000's power supply.
- Slowly apply ER supply pressure and then process pressure. Set the output pressure to a safe value.
- · Check all fittings for tightness using leak test fluid. No bubbles should be seen.

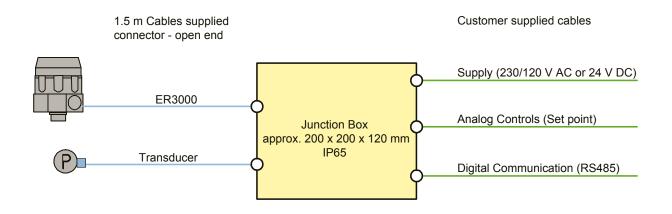

ER3000 Tuning

• In many applications, the standard factory settings will work satisfactorily, but to get the best performance, "tuning" of the control loop parameters may be required (see chapter 8 and ER3000 user manual for detailed information). When tuning, use conditions similar to the final application (i.e. similar pressures, flow, and medium). A tuning procedure is provided in the ER3000 User Manual. There is also "Help" available in the Tune program itself, accessed by going to the Help menu or by pressing 'F1'. See Section 8 for further tuning tips.

6 Wiring

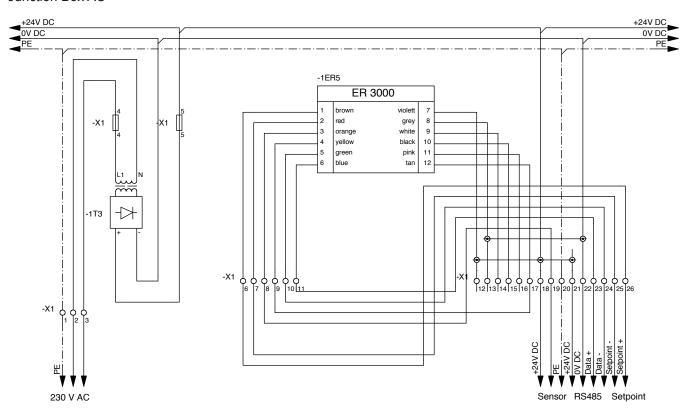
6.1 General Wiring

The following diagram shows the typical electrical connection of the ER3000. You will find additional information in the ER3000 User Manual.



Instruction Manual DOPSMD54161XEN2

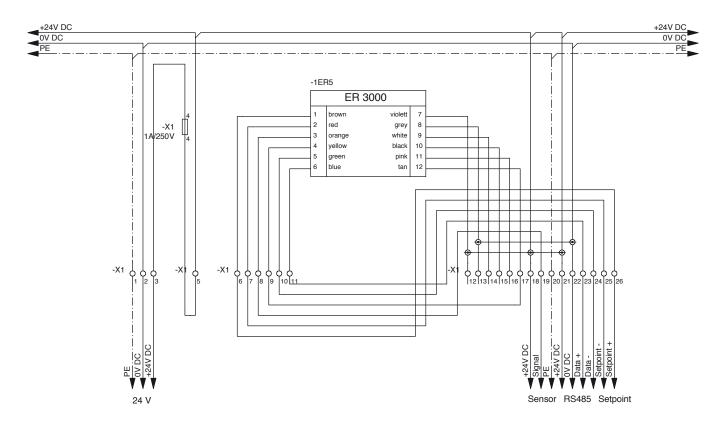
Rev. A


ER3000 Kit

6.2 With Junction Box

Junction Box Schematic

Junction Box AC



Instruction Manual DOPSMD54161XEN2

Rev. A

ER3000 Kit

Junction Box DC

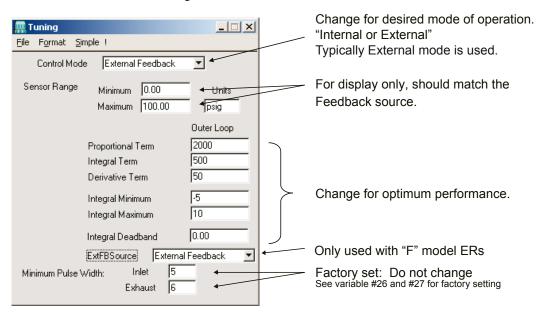
7 Maintenance

The maintenance and repair of pressure equipment must only be performed by trained experts!

Since every application exists under different conditions, the user is responsible for establishing a maintenance program based on their unique situation. Until enough data is collected to set up a schedule, we recommend a 6 - 12 month check of the following:

- 1. Visual check for damages, especial of the tubing, electrical components and cables
- 2. Functional check
- 3. Check for leaks

A periodic calibration of the feedback pressure transducer depends on the user's requirements. Tescom recommends a yearly calibration.


Instruction Manual DOPSMD54161XEN2

Rev. A

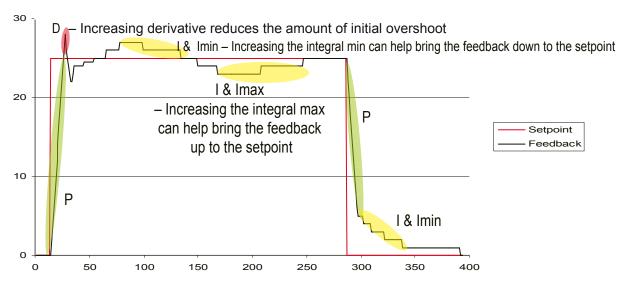
ER3000 Kit

8 Tuning ER3000

If additional tuning is desired, the ER3000 Windows Tune program is provided on the CD included in the ER kit package. See Sections 8.1 and 8.2 for general PID control information

Proportional (P): Right foot on gas pedal, the harder you press the faster you go.

Derivative (D): Left foot on the brake pedal, the harder you press the faster you stop.

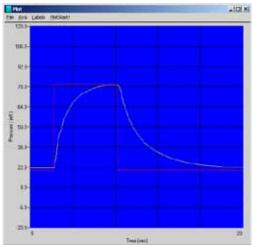

Integral (I): Back seat driver, the bigger the number the louder they are shouting for you to correct your driving.

Integral Min: Back seat driver, the more negative the number the longer they are shouting that you are beyond

your setpoint. Correction will be down to the target.

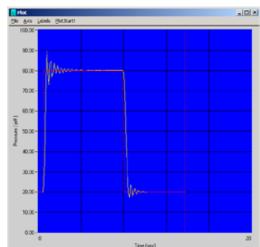
Integral Max: Back seat driver, the bigger the number the longer they are shouting that you are not at your

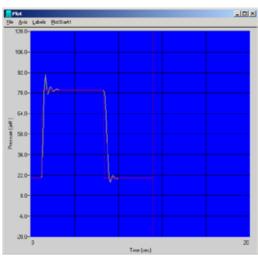
setpoint. Correction will be up to the target.


Instruction Manual DOPSMD54161XEN2

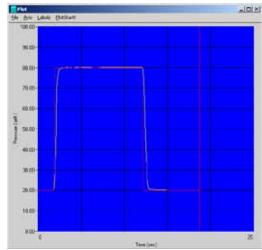
Rev. A

ER3000 Kit


Typical tuning sequence: increase Proportional for faster response. Typical Range: 500 to 3000


Too much Proportional will make unstable.

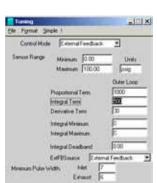
Optimal Proportional with little ringing.

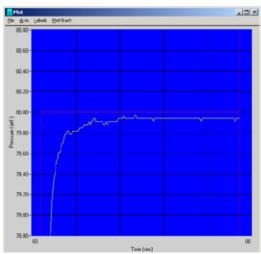


Instruction Manual DOPSMD54161XEN2

PSMD54161XEN2 Rev. A

Increase Derivative to eliminate over-shoot. Typical Range: 20 to 200

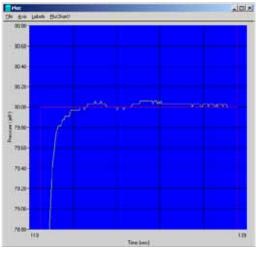



Zoom in to see accuracy.

ER3000 Kit

Make Integral approximately 50% of proportional term.

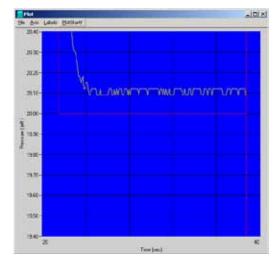
Typical Range: 50% of P term down to zero



Increase Integral maximum to bring the feedback up.

Typical Range: 5 to 300

Has no effect if Integral term = 0

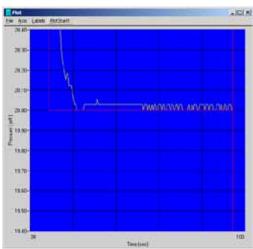


Instruction Manual DOPSMD54161XEN2

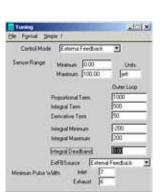
Rev. A

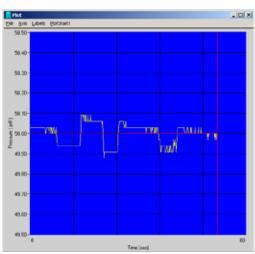
ER3000 Kit

Zoom in on decreasing setpoint.

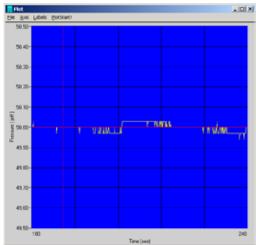


Make Integral Minimum more negative to bring the feedback down to setpoint.


Typical Range: -5 to -300

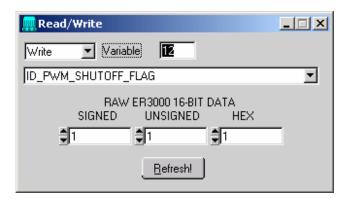

Has no effect if Integral term = 0

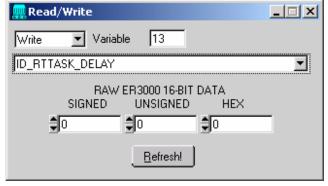
Too much integral may cause oscillations.


Instruction Manual DOPSMD54161XEN2

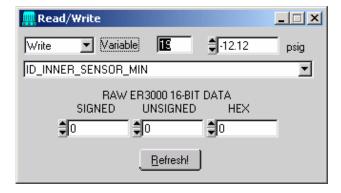
Rev. A

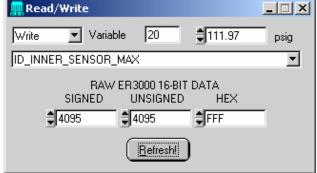
ER3000 Kit


Adding Integral Dead band may remove oscillation. Typical Range: 0.03 to 0.5



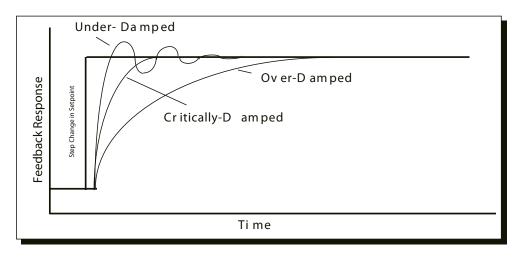
Another way to remove oscillations:


- Change Frequency Response of ER3000
- Change variable 12 to a "0".
- Increase variable 13 to delay in increments of 25 milliseconds. ("0"=25 ms, 1=25 ms, 2=50 ms....)



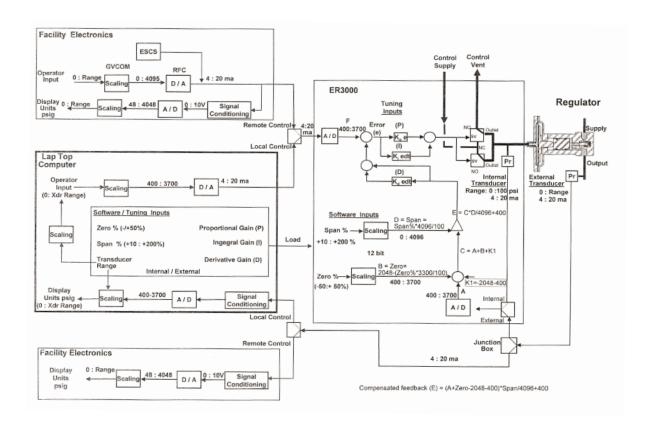
Firmware Version 716 Limit Internal Sensor:

- · Variable 20 limits maximum
- Variable 19 limits minimum


Instruction Manual DOPSMD54161XEN2

Rev. A

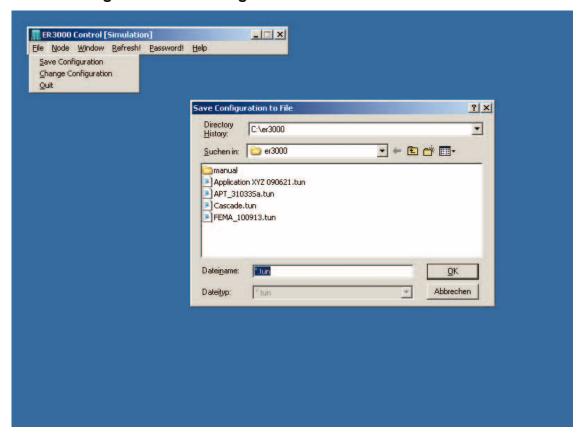
ER3000 Kit

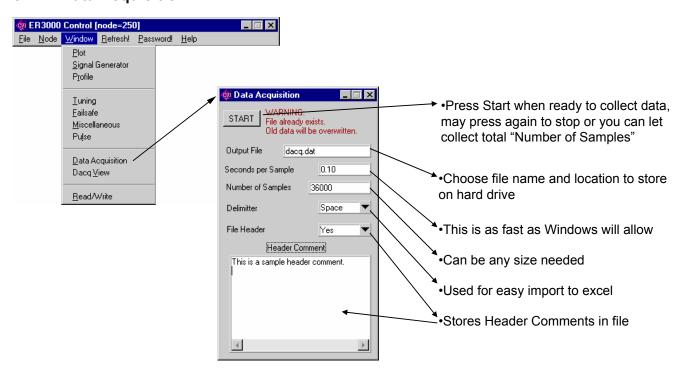

8.1 PID Control -System Response to a Step Change in Setpoint

- Optimal PID parameters result in a "Critically-Damped" response
- Not enough "gain" results in an "Over-Damped" response
- Too much "gain" results in an "Under-Damped" response

8.2 PID Control

Math Model



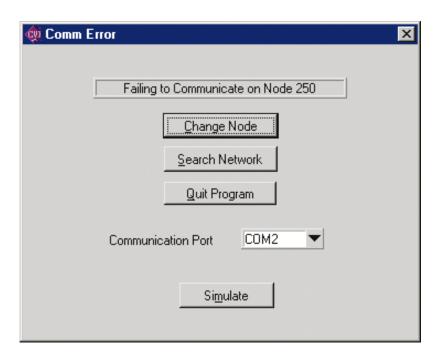

Instruction Manual DOPSMD54161XEN2 Rev. A

ER3000 Kit

8.3 Saving Data - PID Configuration

8.4 Data Acquisition

Instruction Manual DOPSMD54161XEN2 Rev. A


ER3000 Kit

9 ER 3000 Troubleshooting

9.1 System Troubleshooting

Communications

Check LED's on RS485 converter and ER3000 circuit boards.

DLL in use error is related to com port access. Try another Com port.

Instruction Manual DOPSMD54161XEN2

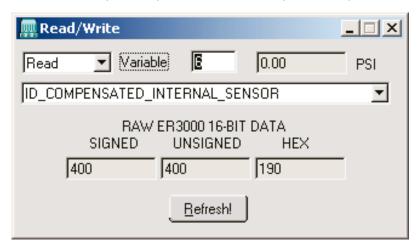
Rev. A

ER3000 Kit

Pressure

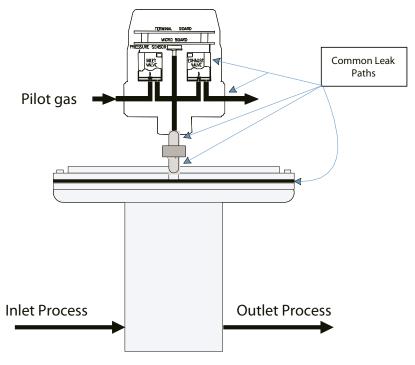
Read/write windows can be used to monitor a digital display of the system pressures.

Variable #1 is the analog setpoint.


1 Vdc or 4 mA is equal to 400 counts. 5 Vdc or 20 mA is equal to 3700 counts.

Variable #5 is the external feedback.

1 Vdc or 4 mA is equal to 400 counts. 5 Vdc or 20 mA is equal to 3700 counts.


Variable #6 is the internal feedback.

400 counts is equal to 0 psi. 3700 counts is equal to 100 psi.

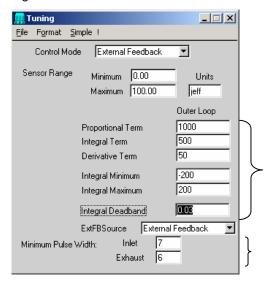
9.2 Leak Paths

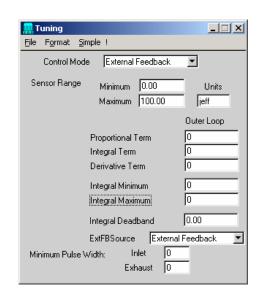
Pressure oscillations are often caused by leaks in the system. Common leak paths are shown below. Use the following leak check procedure to find and eliminate all leaks.

Page 19


Instruction Manual DOPSMD54161XEN2

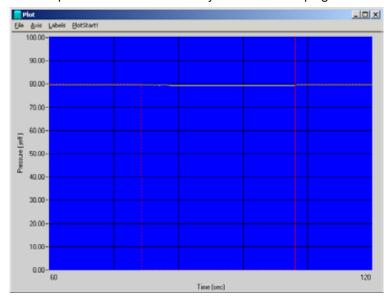
Rev. A


Leak Check


Save current parameters

ER3000 Kit

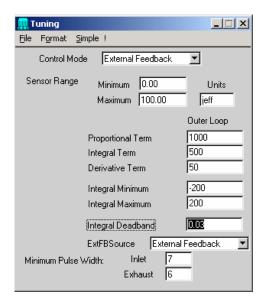
Change PID values to "0"



Instruction Manual DOPSMD54161XEN2

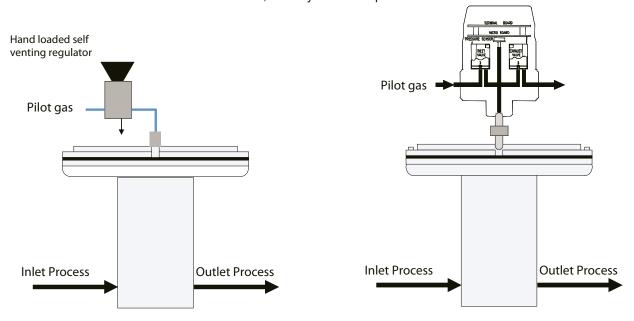
Rev. A

Internal pressure should not decay more then 0.1 psig in 20 seconds.



Restore PID parameters

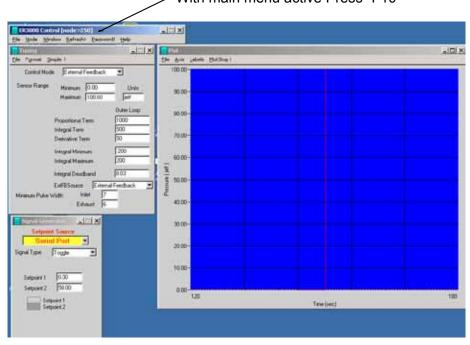
ER3000 Kit



Instruction Manual DOPSMD54161XEN2 Rev. A

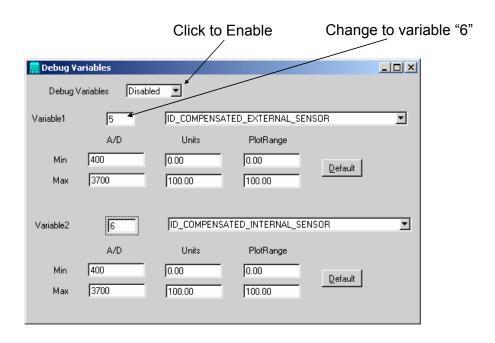
ER3000 Kit

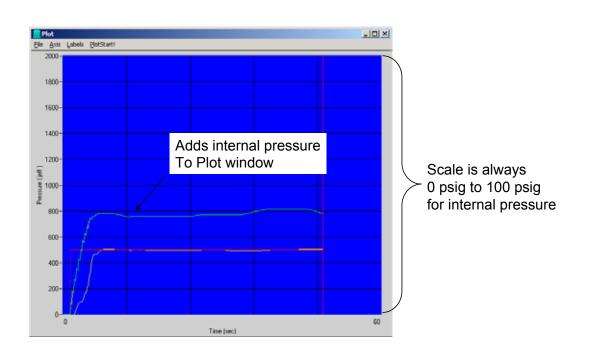
9.3 Isolate Mechanical from electrical


To ensure that the regulator is working properly, test if using one of the methods shown below. With the ER3000 in internal feedback mode, both systems will perform the same.

9.4 Debug Window

By enabling the debug variable, 2 extra parameters can be monitored on the plot screen. In addition, data on these 2 parameters will be collected when running the Windows Tune data acquisition routine.


With main menu active Press F 10



Instruction Manual DOPSMD54161XEN2

Rev. A

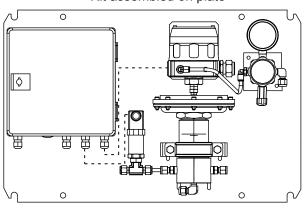
ER3000 Kit

Instruction Manual

DOPSMD54161XEN2 Rev. A

ER3000 Kit

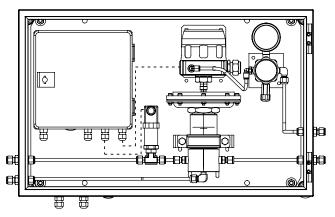
10 Drawings


The drawings in this manual are for reference only. For most up to date drawings please contact your local TESCOM representative.

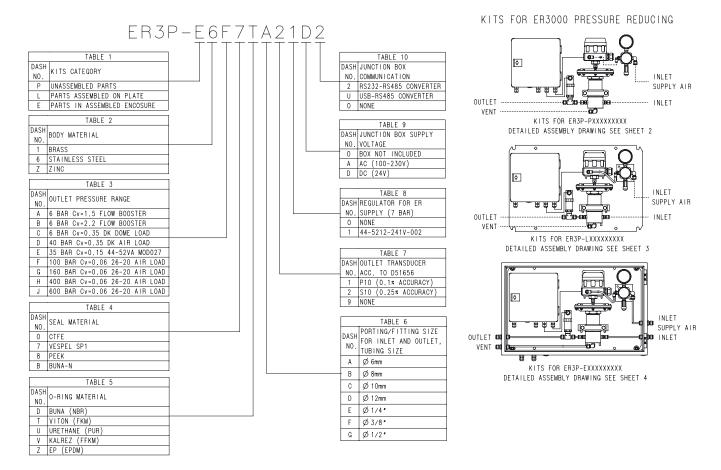
Pressure Reducing Version Regulator for ER supply 44-5212-241V-003 Gauge Junction box ø 6mm for A, B, C, D to be connected to ER ø 1/4" for E, F, G see tables 9, 10 see table 6 ER3000SI-1 -Inlet supply air Supply air elbow ø 6mm for A, B, C, D ø 1/4" for E, F, G CHE THE SE see table 6 Remarks: Adapter * PG - PID-Parameters to be loaded into ER connections according to selected regulator - Cables 1.5 m included for ER and pressure transducer Outlet transducer NPT 1/4" - Pilot regulator is self venting see table 7 - All compression fittings are made of stainless steel Outlet Connections *= not assembled -1380 1891 see table 6 Dotted lines stand for tubes that are not included T-Piece

*: parts are not assembled in Kit 1 Kit assembled on plate

ass. to transducer tube dia. acc


to table 6

Regulator


see tables 1, 2, 3, 4, 5

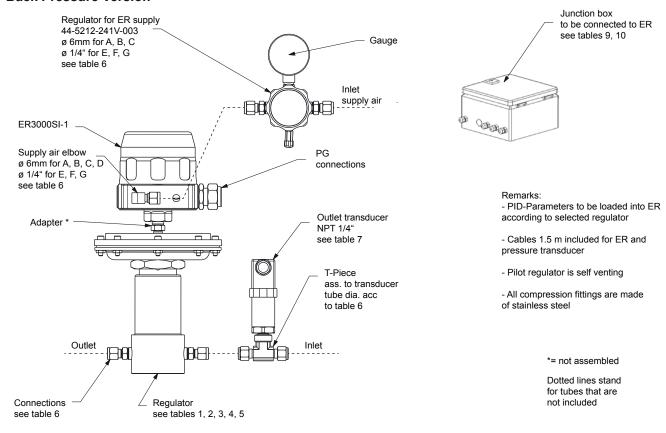
Kit in assembled enclosure

ER3000 Kit

Instruction Manual DOPSMD54161XEN2 Rev. A

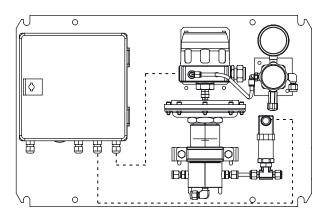
		Available	e Cor	nbi	ina	tio	ns	(SE	LEC	CTIC	ON	CH	IAR	T)								
	REGULATOR	R			BOD	Y		SE	AT			C	-RIN	G		c				UTLI N FIT	ET TING	is
REGULATOR SERIES	PRESSURE RANGE PSIG / BAR	MAX. INLET PRESSURE PSIG / BAR	S	1 – Brass	6 – SST	Z – Zinc	0 -CTFE	7 – Vespel®	8 – PEEK	B − Buna-N®	D − Buna-N®	T − Viton®	U – Urethane	V – Kalrez®	Z – EP	A – ø6 mm	B – ø8 mm	C - ø10 mm	D – ø12 mm	E - 1/4"	F-3/8"	G – 1/2"
A: Flow Booster	87 / 6	300 / 20	1.5	n	n	+	n	n	n	+	+	n	n	n	n	+	+	+	+	+	+	+
B: Flow Booster	87 / 6	300 / 20	2.5	n	n	+	n	n	n	+	+	n	n	n	n	n	n	+	+	n	+	+
C: DK Dome Loaded	87 / 6	1000 / 7	0.35	+	+	n	+	n	+	n	+	+	n	n	+	+	+	+	+	+	+	+
D: DK Air Loaded	580 / 40	1000 / 7	0.35	+	+	n	+	n	+	n	+	+	n	n	+	+	+	+	+	+	+	+
E: 44-52V Air Loaded	580 / 40	3500 / 240	0.15	+	+	n	n	+	n	n	n	+	n	n	n	+	+	n	n	+	n	n
F: 26-20 Air Loaded	1450 / 100	15000 / 1035	0.06	+	+	n	n	+	+	n	+	+	+	+	+	+	+	+	+	+	+	+
G: 26-20 Air Loaded	2320 / 160	15000 / 1035	0.06	+	+	n	n	+	+	n	+	+	+	+	+	+	+	+	+	+	+	+
H: 26-20 Air Loaded	5800 / 400	15000 / 1035	0.06	+	+	n	n	+	+	n	+	+	+	+	+	+	+	+	+	+	+	+
J: 26-20 Air Loaded	8700 / 600	15000 /1035	0.06	+	+	n	n	+	+	n	+	+	+	+	+	+	+	+	+	+	+	+

- + available
- n not available

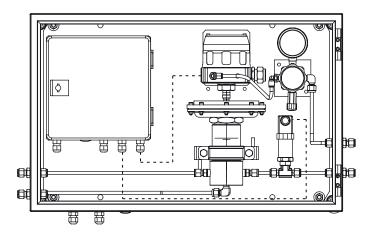

Instruction Manual

DOPSMD54161XEN2

Rev. A

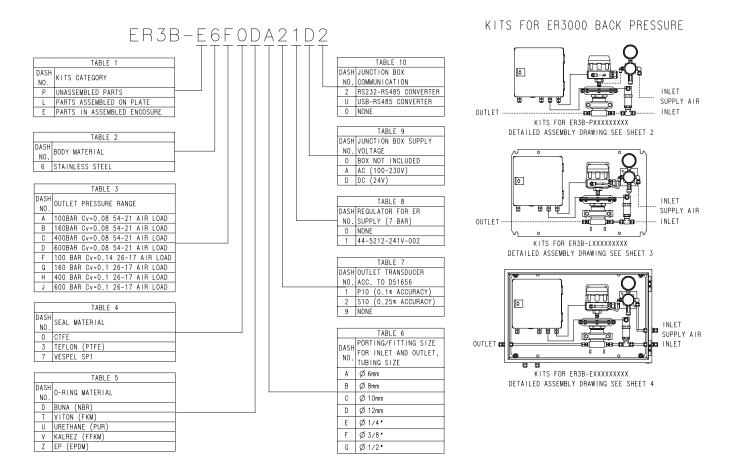

Back Pressure Version

ER3000 Kit



*: parts are not assembled in Kit 1

Kit assembled on plate



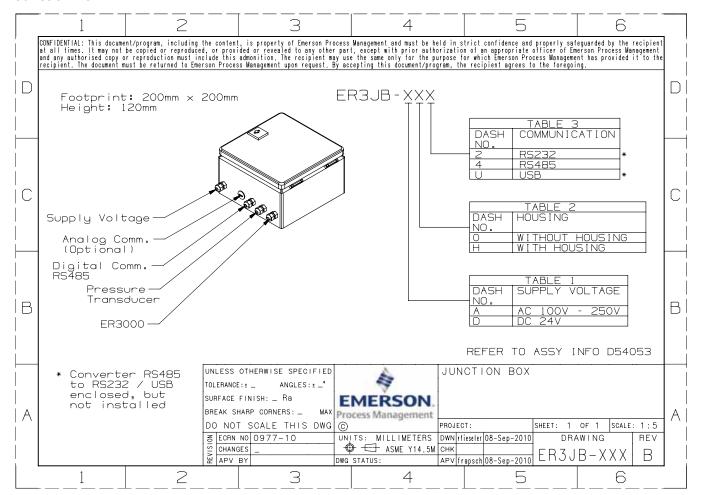
Kit in assembled enclosure

Instruction Manual DOPSMD54161XEN2 Rev. A

ER3000 Kit

		Available C	omb	inatio	ns	(SE	LEC	TIC)N	CHA	٩R٦	7)							
	REGULATOR			BODY		SEAT	-		C	-RIN	G			_		& O		T TING:	5
REGULATOR SERIES	PRESSURE RANGE PSIG / BAR	MAX. INLET PRESSURE PSIG / BAR	5	6 – SST	0 – CTFE	3 – Teflon®	7 – Vespel®	D − Buna-N®	T − Viton®	U – Urethane	V – Kalrez®	Z – EP	A – ø6 mm	B – ø8 mm	C – ø10 mm	D – ø12 mm	E - 1/4"	F-3/8"	G – 1/2"
A: 54-2100 Air Loaded	1450 / 100	1000 / 690	0.08	+	n	n	+	+	+	+	+	+	+	+	+	+	+	+	+
B: 54-2100 Air Loaded	2320 / 160	1000 / 690	0.08	+	n	n	+	+	+	+	+	+	+	+	+	+	+	+	+
C: 54-2100 Air Loaded	5800 / 400	1000 / 690	0.08	+	n	n	+	+	+	+	+	+	+	+	+	+	+	+	+
D: 54-2100 Air Loaded	8700 / 600	1000 / 690	0.08	+	n	n	+	+	+	+	+	+	+	+	+	+	+	+	+
F: 26-1700 Air Loaded	1450 / 100	1000 / 690	0.14	+	n	+	+	+	+	n	n	n	+	+	+	+	+	+	+
G: 26-1700 Air Loaded	2320 / 160	1000 / 690	0.1	+	+	n	+	+	+	n	n	n	+	+	+	+	+	+	+
H: 26-1700 Air Loaded	5800 / 400	1000 / 690	0.1	+	+	n	+	+	+	n	n	n	+	+	+	+	+	+	+
J: 26-1700 Air Loaded	8700 / 600	1000 / 690	0.1	+	+	n	+	+	+	n	n	n	+	+	+	+	+	+	+

- + available
- n not available



Instruction Manual

DOPSMD54161XEN2 Rev. A

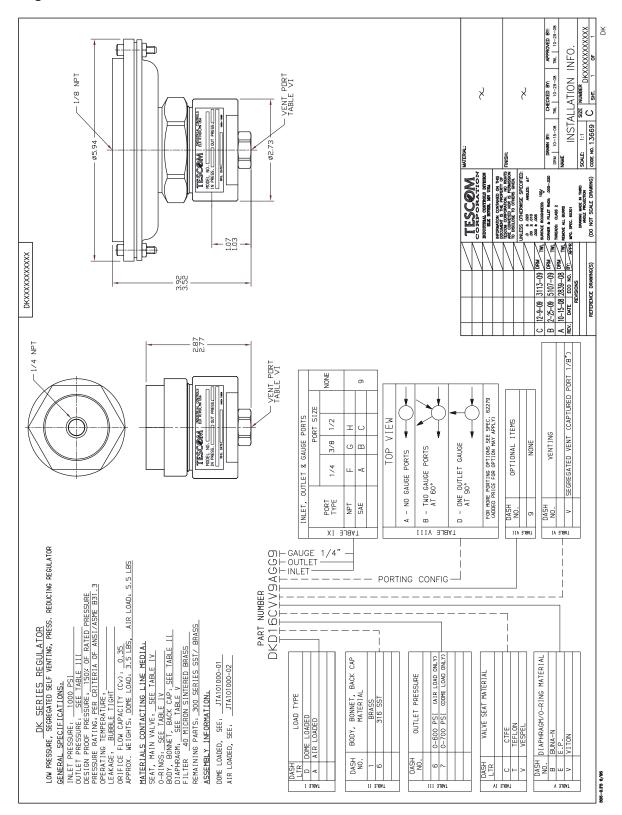
Junction Box

ER3000 Kit

Instruction Manual DOPSMD54161XEN2 Rev. A

ER3000 Kit

Regulator 26-2000 Series



ER3000 Kit

Instruction Manual DOPSMD54161XEN2 Rev. A

Regulator DK Series

Instruction Manual DOPSMD54161XEN2 Rev. A

ER3000 Kit

Regulator Flow Booster

Part Number	Installation Dimensions	Inlet & Outlet Port Size	Guage	Port	Weight (Ibs)	Cv
269-529-04	3,4	1/4 NPT	4.44.1107			1.5
269-529-06	1.4	3/8 NPT	1/4 NPT	1/8 NPT	1.6	2.2

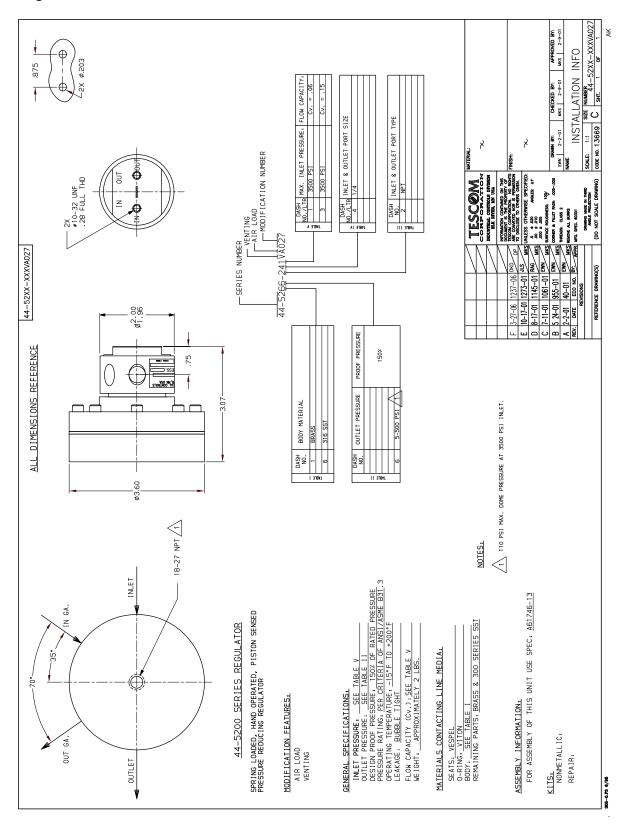
Pilot Operated Diaphragm Style Regulator Max. Inlet Pressure: 300 psig (20.4 bar) Max. Outlet Pressure: 290 psig (19.7 bar) (100psig when used with ER3000) Temperature Range: 40°-120°F (4.4-48.9°C)
Cast Zinc Body
Pressure Venting is NOT Captured
Constant bleed from pilot pressure to vent
for improved control

Cutaway Drawing for: 269-529-04 269-529-06

Vent Port

Outlet Port

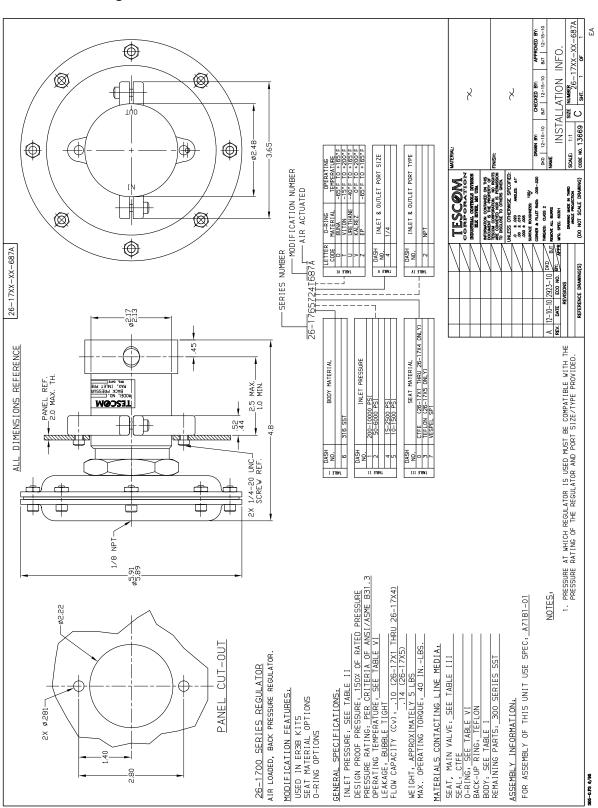
Gauge Port



Instruction Manual

DOPSMD54161XEN2 Rev. A

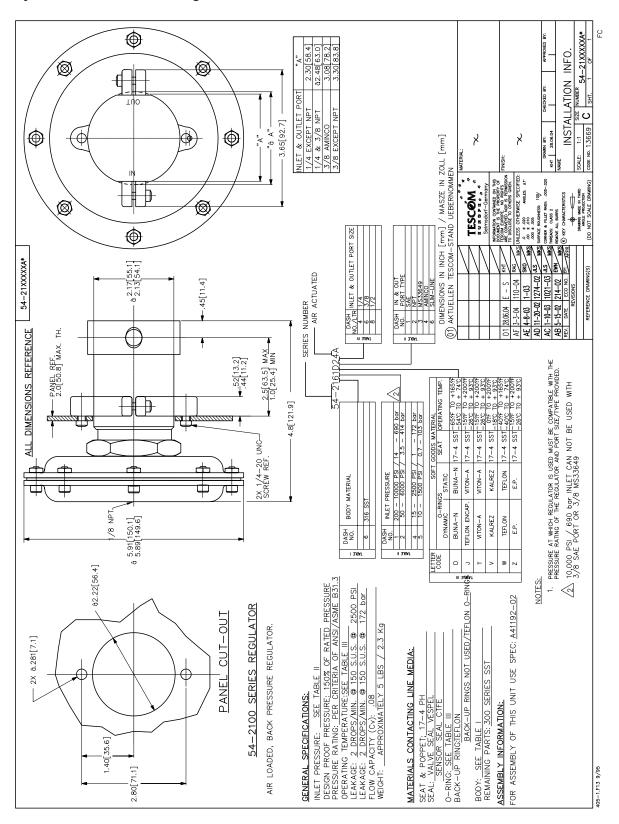
ER3000 Kit


Regulator 44-5200 Series

Instruction Manual DOPSMD54161XEN2 Rev. A

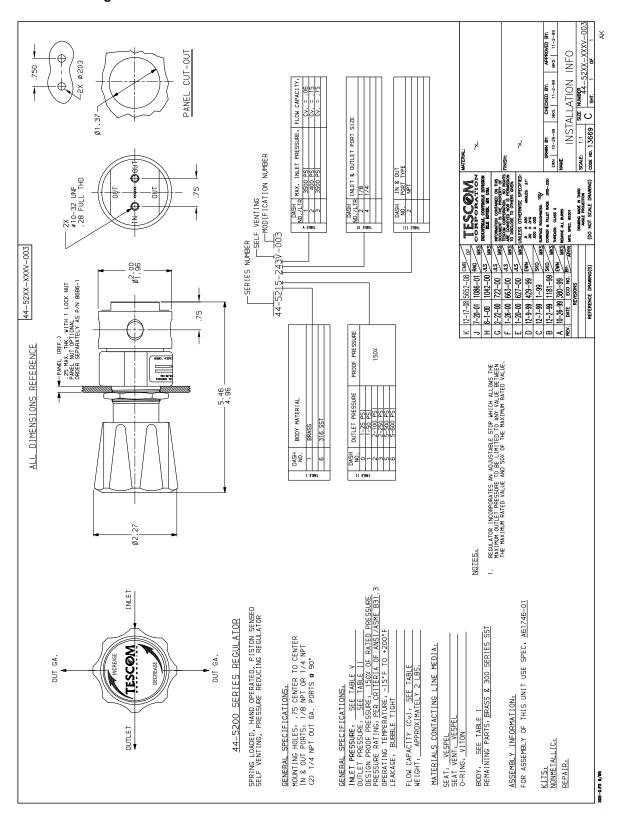
ER3000 Kit

Back Pressure Regulator 26-1700 Series



Instruction Manual DOPSMD54161XEN2 Rev. A

ER3000 Kit


Hydraulic Back Pressure Regulator 54-2100 Series

Instruction Manual DOPSMD54161XEN2 Rev. A

ER3000 Kit

Control Air Regulator 44-5200 Series

DOPSMD54161XEN2

Rev. A

11 **Parts List**

ER3000 Kit

#	Part No.	Description
1	ER3000SI-1	Electro pneumatic Controller
1	26-20xx x2x A2x0 DK-D17xxV9Axx9 DK-A16xxV9Axx9 269-529-04 269-529-06 44-52x6-241VA-027 26-176x-2xA 54-216x-x2xA	Mechanical Regulator, air loaded including Elbow compression fitting - NPT 1/4" "x": see order code
1	D51656-NB-xxx	Pressure transducer ± 0.25%, 4 - 20 mA, 1/4" NPT male or ± 0.1%, 4 - 20 mA, 1/4" NPT male including T-piece NPT 1/4", 2 x selected fitting size
1	D54102	Assembly material: 1 Adapter NPT 1/4" - NPT 1/8" 1 Muffler, NPT 1/4" 1 Cable gland NPT 1/2" 1 Cap NPT 1/2" 4 screws 8-32 UNC 1 Filter 1/8" NPT
1	85138-01	ER3000 Cable, 12 wire, shielded, 1.5 m circuit board connector – open end
1	D54115	Transducer Cable, 2 wire, shielded, 1.5 m DIN 175301-803A – open end
(1)	44-5212-241V-002	Regulator inlet max. 240 bar / 3000 psi, outlet 7 bar / 100 psi, Cv=0.06, venting, brass body, 1/4" NPT ports with 1 Gauge 10 bar (150 psi), 63 mm, brass, 1/4" NPT Tube fittings
(1)	ER3JB-xx	Junction Box
(1)	85061	Converter RS485 – RS232
(1)	82948	Converter RS485 - USB

Instruction Manual DOPSMD54161XEN2

Rev. A ER3000 Kit

12 Appendix

- Pressure Transducer
- RS485 Converter

 Instructions for Use of Regulator see attached pdf files

26-20, 54-20 dopsmD44307xde2.pdf 26-17, 54-21 dopsmD43746xde2.pdf 44-52 dopsmD43747xde2.pdf

DK

flow booster 269529 flow booster.pdf

ER3000 Catalog pages
 ER3000 User's Manual
 see pdf file, or download from the Tescom Internet page:

www.Tescom.com for the English version www.Tescom-Europe.com for the German version

• ER3000 Software please download latest version from the Tescom Internet page:

www.Tescom.com

12.1 Pressure Transducer

Order Code - Bestellcode: D51656 - NB - xxx

NB:	NPT1/4"	
XXX:	1	1 bar
	2,5	2,5 bar
	4	4 bar
	6	6 bar
	10	10 bar
	25	25 bar
	40	40 bar
	60	60 bar
	100	100 bar
	250	250 bar
	400	400 bar
	600	600 bar

Instruction Manual DOPSMD54161XEN2

Rev. A

ER3000 Kit

Description

This series of pressure transmitters has been carefully designed to cover the majority of industrial applications with instruments readily available from stock.

Compact design and robust construction make these instruments suitable for all applications in machine construction, process control, laboratory or quality and materials testing equipment.

There is an extraordinary range of instrument variants resulting from the fact that various mechanical and electrical connections can be combined with each other to almost any extent.

Structure

All wetted parts are made of stainless steel and are hermetically welded. Therefore there is no need for additional sealing material, which could possibly react with the pressure medium. The compact case is also made of stainless steel and provides IP 65 ingress protection (special versions up to IP 68).

The transmitters can be supplied with a non-stabilized direct voltage of 10 (14) ... 30 V and provide standard industrial output signals.

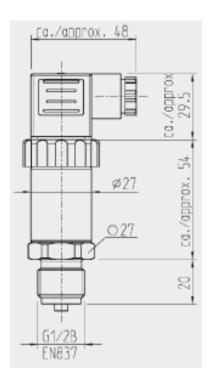
The model S-11 with flush diaphragm is particularly suitable for the measurement of viscous fluids or media containing particulates that may clog the pressure connection of standard industrial transmitters. Thus, a trouble-free pressure measurement is ensured. Pressure transmitters with flush diaphragm are available in pressure ranges from 0 ... 0.1 bar to 0 ... 600 bar. For applications with higher temperature requirements an integrated cooling element enables medium temperatures of up to 150 °C (302 °F).

For the pressure ranges from 0 ... 0.25 bar up to 0 ... 1000 bar the pressure transmitters can be delivered for oxygen applications (technical safety check of the BAM, Bundesanstalt für Materialforschung und -prüfung available).

Instruction Manual DOPSMD54161XEN2 Rev. A

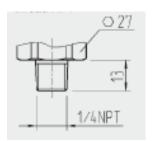
ER3000 Kit

Specifications		Mod	lel S-	-10 / :	S-11							
Pressure ranges *)	bar	0.1	0.16	0.25	0.4	0.6	1	1.6	2.5	4	6	10
Over pressure safety	bar	1	1.5	2	2	4	5	10	10	17	35	35
Burst pressure	bar	2	2	2.4	2.4	4.8	6	12	12	20.5	42	42
Pressure ranges *)	bar	16	25	40	60	100	160	250	400	600	10001	_
Over pressure safety	bar	80	50	80	120	200	320	500	800	1200	1500	
Burst pressure	bar	96	96	400	550	800			17002)			
	{Vacuum, ga		sure, co		range.							units
	are available											
	1) Only mode											
	2) For model		value	specifie	d in the	table ac	plies on	lv when	sealing	is realis	ed with	the
	sealing rin									10 100110		
Materials								аррасс				
Wetted parts												
» Model S-10 ")		Stainle	ss stee	1								
» Model S-11		Stainle				O-ring:	NBR 3) {F	EPM/EK	MI			
■ Case			ss stee			O-filing.	i i i i i	T WOOT IN	avij			
■ Internal transmission fluid ⁴⁾					bon oil f	OF 01010	en applic	ational				
il internal transmission huid							el S-11 v			aalina a	lomoni	
			-				ei S-11 v > 25 bar.		yrated C	ooning e	ement	•
Power supply III	U+ in VDC	_				-						
Power supply U+					-		10 V)		٨			
Signal output and	RA in Ohm			wire		•	+ - 10 V)					
maximum ohmic load RA		0 20					+ - 3 V) /	0.02 A				
		0 5 \				RA > 5 k						
		0 10				RA > 10	k					
			_	outputs		-						
Adjustability zero/span	%	± 5 usi	ng pote	entiomet	ers insid	de the in	strumen	rt				
Response time (10 90 %)	ms	≤1 (≤1	10 ms a	t mediu	m temp	eratures	below <	< -30 °C	for pres	sure rar	nges up	to
		25 bar	or with	flush di	aphragn	n)						
Insulation voltage	VDC	500 5)										
	5) NEC Class	3 02 powe	er supp	ly (low v	oltage a	nd low	current r	nax. 10	0 VA eve	n under	r fault	
	conditions	3)										
Accuracy 6)	% of span	≤ 0.5	{0.25}	7)								
	6) Including	non-linear	rity, hys		zero poi	int and f	iull scale	error (c	orrespor	nds to e	error of	
				teresis,	zero poi	int and f	ull scale	error (c	orrespor	nds to e	error of	
	6) Including	ent per lE	C 6129	teresis, 98-2)				·		nds to e	error of	
	6) Including i measurem Adjusted i	ent per IE n vertical	C 6129	teresis, 98-2) ng posit	ion with	lower p		·		nds to e	error of	
Non-linearity	6) Including i	ent per IE n vertical	C 6129	teresis, 98-2) ng posit	ion with	lower p	ressure	connec	tion		error of	
•	6) Including I measurem Adjusted i 7) Accuracy	ent per IE n vertical { } for pre	C 6129	teresis, 98-2) ng posit	ion with	lower p		connec	tion		error of	
Non-repeatability	6) Including a measurem Adjusted i 7) Accuracy % of span % of span	n vertical { } for pre ≤ 0.2 ≤ 0.1	C 6129	teresis, 98-2) ng posit	ion with 0,25 ba	lower p ar (BFSL) a	oressure	connec	tion 61298-		error of	
Non-repeatability 1-year stability	6) Including to measurem Adjusted it 7) Accuracy % of span	n vertical { } for pre	C 6129	teresis, 98-2) ng posit	ion with 0,25 ba	lower p ar (BFSL) a	ressure	connec	tion 61298-		error of	
Non-repeatability 1-year stability Permissible temperature of	6) Including a measurem Adjusted i 7) Accuracy % of span % of span	ent per IE n vertical { } for pre ≤ 0.2 ≤ 0.1 ≤ 0.2	mounti	teresis, 98-2) ng posit	ion with	lower p ar (BFSL) a (at refer	according	connec g to IEC	tion ; 61298-	2		
Non-repeatability 1-year stability Permissible temperature of Medium ⁸⁾ T)	6) Including a measurem Adjusted i 7) Accuracy % of span % of span	ent per IE n vertical { } for pre ≤ 0.2 ≤ 0.1 ≤ 0.2 -30	mounti essure r	teresis, 98-2) ng posit ranges ≥	ion with	lower p ar (BFSL) a (at refer	according	connections to the connections of the connections o	tion 61298-) 2 °F {-4	2		
Non-repeatability 1-year stability Permissible temperature of Medium 8) *) "S-11 with cooling element	6) Including a measurem Adjusted i 7) Accuracy % of span % of span	ent per IE n vertical { } for pre ≤ 0.2 ≤ 0.1 ≤ 0.2 -30	mounti essure r +100 °C +150 °C	teresis, 98-2) ng posit ranges ≥	ion with	lower p ar (BFSL) a (at refer	ence cor	connections to IEC anditions 2 +21 +302	61298- 61298-) 2 °F {-4	2		
Non-repeatability 1-year stability Permissible temperature of Medium 8) ") "S-11 with cooling element Ambience 8)	6) Including a measurem Adjusted i 7) Accuracy % of span % of span	ent per IE n vertical { } for pre ≤ 0.2 ≤ 0.1 ≤ 0.2 -30 -20	+100 °C+150 °C+80 °C	teresis, 98-2) ng posit ranges ≥	ion with	lower p ar (BFSL) a (at refer	ence cor -22 -4 -4	connec g to IEC additions 2 +21 +302 +176	2 °F {-4 °F	2		
Non-repeatability 1-year stability Permissible temperature of Medium ⁸⁾ ") "S-11 with cooling element Ambience ⁸⁾ "S-11 with cooling element	6) Including a measurem Adjusted i 7) Accuracy % of span % of span	ent per le n vertical { } for pre	+100 °C +80 °C +80 °C	teresis, 98-2) ng posit ranges ≥	ion with	lower p ar (BFSL) a (at refer	ence cor -22 -4 -4 -4	connec g to IEC aditions 2 +21 +302 +176 +176	61298-) 2 °F {-4 °F °F °F	2		
Non-repeatability 1-year stability Permissible temperature of Medium ⁸⁾ ") "S-11 with cooling element Ambience ⁸⁾ "S-11 with cooling element Storage ⁸⁾	6) Including a measurem Adjusted i 7) Accuracy % of span % of span	ent per IE n vertical { } for pre	+100 °C +80 °C +100 °C	teresis, 98-2) ng posit ranges ≥	ion with	lower p ar (BFSL) a (at refer	ence cor -22 -4 -4 -4	connec g to IEC additions 2 +21 +302 +176 +176	2 °F {-4 °F °F °F 2 °F	2		
Non-repeatability 1-year stability Permissible temperature of Medium ⁸⁾ ") "S-11 with cooling element Ambience ⁸⁾ "S-11 with cooling element	6) Including a measurem Adjusted i 7) Accuracy % of span % of span % of span	ent per IE n vertical { } for pre	+100 °C +150 °C +80 °C +100 °C +100 °C	teresis, 98-2) ng posit ranges ≥	o,25 ba	lower par (BFSL) a (at refer	ence cor -22 -4 -4 -4 -4 -4	connec g to IEC aditions 2 +21 +302 +176 +176 0 +21	2 °F {-4 °F °F °F 2 °F °F	2 0 +25	57 °F}	ove.
Non-repeatability 1-year stability Permissible temperature of Medium ⁽⁸⁾ ⁽⁷⁾ "S-11 with cooling element Ambience ⁽⁸⁾ "S-11 with cooling element Storage ⁽⁸⁾ "S-11 with cooling element	6) Including a measurem Adjusted i 7) Accuracy % of span % of span	ent per IE n vertical { } for pre	+100 °C +80 °C +100 °C +100 °C +100 °C +100 °C	teresis, 98-2) ng posit ranges ≥	o,25 ba	lower par (BFSL) a (at refer	ence cor -22 -4 -4 -4 -4 (-4 (-4)	connec g to IEC aditions 2 +21 +302 +176 +176 0 +212 Storage	2 °F {-4 °F	2 0 +25	57 °F}	2K3
Non-repeatability 1-year stability Permissible temperature of Medium 8) *) "S-11 with cooling element Ambience 8) "S-11 with cooling element Storage 8) "S-11 with cooling element Rated temperature range	6) Including a measurem Adjusted i 7) Accuracy % of span % of span % of span	ent per IE n vertical { } for pre	+100 °C +80 °C +100 °C +100 °C +100 °C +100 °C	teresis, 98-2) ng posit ranges ≥	o,25 ba	lower par (BFSL) a (at refer	ence cor -22 -4 -4 -4 -4 (-4 (-4)	connec g to IEC aditions 2 +21 +302 +176 +176 0 +21	2 °F {-4 °F	2 0 +25	57 °F}	2K3
Non-repeatability 1-year stability Permissible temperature of Medium 8) 1) "S-11 with cooling element Ambience 8) "S-11 with cooling element Storage 8) "S-11 with cooling element Rated temperature range Temperature coefficients within	6) Including a measurem Adjusted i 7) Accuracy % of span % of span % of span	ent per IE n vertical { } for pre	+100 °C +80 °C +100 °C +100 °C +100 °C +100 °C	teresis, 98-2) ng posit ranges ≥	o,25 ba	lower par (BFSL) a (at refer	ence cor -22 -4 -4 -4 -4 (-4 (-4)	connec g to IEC aditions 2 +21 +302 +176 +176 0 +212 Storage	2 °F {-4 °F	2 0 +25	57 °F}	2K3
Non-repeatability 1-year stability Permissible temperature of Medium 8) 1) "S-11 with cooling element Ambience 8) "S-11 with cooling element Storage 8) "S-11 with cooling element Rated temperature range Temperature coefficients within rated temperature range	6) Including a measurem Adjusted i 7) Accuracy % of span	ent per IE n vertical { } for pre	+100 °C +100 °C +100 °C	teresis, 98-2) ing positi ranges ≥ C {-40 C	+125 °(lower par (BFSL) a (at refer C)	22 -4 -4 -4 -4 -4() -4() 32	connec g to IEO ditions 2 +21 +302 +176 0 +21 Storage +176	2 °F {-4 °F	2 0 +25	57 °F}	2K3
Non-repeatability 1-year stability Permissible temperature of Medium 8) 1) "S-11 with cooling element Ambience 8) "S-11 with cooling element Storage 8) "S-11 with cooling element Rated temperature range Temperature coefficients within rated temperature range Mean TC of zero	6) Including a measurem Adjusted i 7) Accuracy % of span	ent per IE n vertical { } for pre	+100 °C +100 °C +100 °C	teresis, 98-2) ing positi ranges ≥ C {-40 C	+125 °(lower par (BFSL) a (at refer C)	ence cor -22 -4 -4 -4 -4 (-4 (-4)	connec g to IEO ditions 2 +21 +302 +176 0 +21 Storage +176	2 °F {-4 °F	2 0 +25	57 °F}	2K3
Non-repeatability 1-year stability Permissible temperature of Medium 8) 1) "S-11 with cooling element Ambience 8) "S-11 with cooling element Storage 8) "S-11 with cooling element Rated temperature range Temperature coefficients within rated temperature range Mean TC of zero	6) Including a measurem Adjusted i 7) Accuracy % of span	ent per IE n vertical { } for pre	+100 °C +100 °C +150 °C +80 °C +100 °C EN 501 10 °C	teresis, 98-2) ing positi ranges ≥ C {-40 C	+125 °(lower par (BFSL) a (at refer C)	22 -4 -4 -4 -4 -4() -4() 32	connec g to IEO ditions 2 +21 +302 +176 0 +21 Storage +176	2 °F {-4 °F	2 0 +25	57 °F}	2K3
Non-repeatability 1-year stability Permissible temperature of Medium 8) *) "S-11 with cooling element Ambience 8) "S-11 with cooling element Storage 8) "S-11 with cooling element Storage 8) "S-11 with cooling element Rated temperature range Temperature coefficients within rated temperature range Mean TC of zero Mean TC of range	6) Including a measurem Adjusted i 7) Accuracy % of span	ent per IE n vertical { } for pre	+100 °C +100 °C +150 °C +80 °C +100 °C EN 501 10 °C	teresis, 98-2) ing positi ranges ≥ C {-40 C	+125 °(lower par (BFSL) a (at refer C)	22 -4 -4 -4 -4 -4() -4() 32	connec g to IEO ditions 2 +21 +302 +176 0 +21 Storage +176	2 °F {-4 °F	2 0 +25	57 °F}	2K3
Non-repeatability 1-year stability Permissible temperature of Medium 8) ") "S-11 with cooling element Ambience 8) "S-11 with cooling element Storage 8) "S-11 with cooling element Rated temperature range Temperature coefficients within rated temperature range Mean TC of zero Mean TC of range CE-conformity	6) Including a measurem Adjusted i 7) Accuracy % of span	ent per IE n vertical { } for pre	+100 °C +100 °C +100 °C +80 °C +100 °C EN 501 10 °C	teresis, 98-2) ing positi ranges ≥ C {-40 C	+125 °(lower par (BFSL) a (at refer C)	22 -4 -4 -4 -4 -4() -4() 32	connec g to IEO ditions 2 +21 +302 +176 0 +21 Storage +176	2 °F {-4 °F	2 0 +25	57 °F}	2K3
Non-repeatability 1-year stability Permissible temperature of Medium 8) *) "S-11 with cooling element Storage 8) "S-11 with cooling element Storage 8) "S-11 with cooling element Storage 8) "S-11 with cooling element Enter temperature range Temperature coefficients within rated temperature range Mean TC of zero Mean TC of range CE-conformity Pressure equipment directive	6) Including a measurem Adjusted i 7) Accuracy % of span	ent per IE n vertical { } for pre	+100 °C +100 °C +100 °C +100 °C +100 °C +100 °C +100 °C +100 °C	teresis, 98-2) ing positi ranges ≥ C {-40 C	+125 °C	lower par (BFSL) a (at refer C)	22 -4 -4 -4 -4 -4() -4() 32	connec g to IEO nditions 2 +21 +302 +176 0 +21 Storage +176 ar)	tion 2 °F {-4 °F °F °F °F °F °F °F °F °F °	2 0 +25	57 °F}	2K3
Non-repeatability 1-year stability Permissible temperature of Medium 8) ") "S-11 with cooling element Ambience 8) "S-11 with cooling element Storage 8) "S-11 with cooling element Storage 8) "S-11 with cooling element Enter the storage 8) "S-11 with cooling element Enter the storage 8) Wean TC of gero Mean TC of range CE-conformity Pressure equipment directive	6) Including a measurem Adjusted i 7) Accuracy % of span	ent per IE n vertical { } for pre	+100 °C +100 °C +100 °C +80 °C +100 °C EN 501 10 °C	teresis, 98-2) ing positi ranges ≥ C {-40 C	+125 °C 7, Open	lower par (BFSL) a (at refer C)	22 -4 -4 -4 -4 -4 -4 -4 32 ≤ 0.25 b	connec g to IEO nditions 2 +21 +302 +176 0 +21 Storage +176 ar)	tion 2 °F {-4 °F °F °F °F °F °F °F °F °F °	2 0 +25	57 °F}	2K3
Ambience 8) »S-11 with cooling element Storage 8)	6) Including a measurem Adjusted i 7) Accuracy % of span	ent per IE n vertical { } for pre	+100 °C +100 °C +100 °C +100 °C +100 °C +100 °C +100 °C +100 °C +100 °C +100 °C	teresis, 98-2) ing positi ranges ≥ C {-40 C C 78, Tab.	+125 °C 7, Open	lower par (BFSL) a (at refer C)	22 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 -4	connec g to IEO nditions 2 +21 +302 +176 0 +21 Storage +176 ar)	tion 2 °F {-4 °F °F °F °F °F °F °F °F °F F	2 0 +25	57 °F}	2K3


Instruction Manual DOPSMD54161XEN2

Rev. A

ER3000 Kit


Dimensions

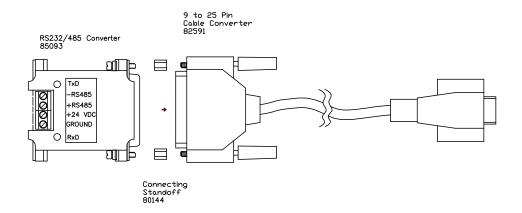
DIN 175301-803 A L-connector

Connection NB

1/4 NPT per "Nominal size for US standard tapered pipe thread NPT"

Electrical Connection

	L-connector DIN 175301-803 A		
	13 © 1		
2-wire	U+ = 1	U- = 2	
3-wire	U+ = 1	U- = 2	S+ = 3
Cable screen			
Wire gauge	up to max. 1.5 mm ²		
Diameter of cable	6-8 mm (ship approval: 10-14 mm)		
Ingress protection per IEC 60 529	IP 65		


Instruction Manual DOPSMD54161XEN2

Rev. A ER3000 Kit

12.2 RS232-485 Converter

RS2485 to RS232 Converter including 9 to 25 pin cable

Part number: 85061

USB to RS485 Converter

Part number: 82948

Instruction for using the datalink communications USB to RS485 converter with the ER3000

Dip Switch Setup:

Set the 4 Dip Switches located on the back of converter to RS485, ECHO OFF, 2 WIRE, 2 WIRE

Wiring:

Attach the green wire from the ER3000 to the Converter's TDA(-) PIN and the blue wire to the TDB(+) Pin

Driver Installation:

Follow directions provided by Datalink Communications

DOPSMD54161XEN2

Rev. A

ER3000 Kit

For your own notes

Instruction Manual DOPSMD54161XEN2 Rev. A

ER3000 Kit

For your own notes

Instruction Manual DOPSMD54161XEN2

Rev. A

ER3000 Kit

WARNING! Do not attempt to select, install, use or maintain this product until you have read and fully understood the TESCOM Safety, Installation & Operation Precautions.

The contents of this publication are presented for informational purposes only, and while every effort has been made to ensure their accuracy, they are not to be construed as warranties or guarantees, expressed or implied, regarding the products or services described herein or their use or applicability. We reserve the right to modify or improve the designs or specifications of such product at any time without notice.

USA

T +1 800 447 1250 +1 763 241 3238 na.tescom@emerson.com www.tescom.com

Germany T +49 38823 31-287 eu.tescom@emerson.com www.tescom-europe.com

United Kingdom T +44 1698 424 254 uk.tescom@emerson.com www.tescom.com

China T +86 21 2892 9499 apc.tescom@emerson.com www.tescom.com

United Arab Emirates T +971 4 811 8443 mea.tescom@emerson.com www.tescom.com

