
D
10

27
60

X
01

2

Design VC1000 Programming Manual
Contents

Introduction 1.
Scope of Manual 2.
Drive Overview 2.
User Interface 2.
Loading and Saving Programs 3.

Basic Programming Principles 3.
System Variables, User Variables,

and Constants 4.
System Variables 4.
User Variables 4.
Constants 5.

Integer Math 5.
More About States 5.

Labels 5.
Actions 5.
Transitions 5.

More Specifics About Working
With The Drive System 6.

Selecting, Editing, and Adding a State 6.
Selecting, Editing, and Adding an Action 6.
Selecting, Editing, and Adding a Transition 7.
Programming Standards 8.

Saving and Retrieving Program
Files to Disk 8.

Retrieve and Upload a Program Into a Drive 9.
Download and Save a Program From a Drive 9. . . .

Example—Entering an Application
Program 10.

Appendix A—The Start Screen 12.

Appendix B—Table of
Possible Actions 13.

Appendix C—Table of Transitions 15.

Figure 1. Design VC1000 Servo Drive

W7988/IL

Appendix D—Table of
System Variables 17.

Appendix E—Useful Formulas for
the Design VC1000 19.

Derivative Gain 19.
Proportional Gain 19.
Integral Gain 19.
Low Pass Filter 19.
Current 20.
Velocity 20.
Position Counts 20.

Appendix F—Example Program 21.

Introduction
The Design VC1000 servo drive is preprogrammed at
the factory. Normally,you will not need to reprogram

Instruction Manual
Form 5656
October 2000 VC1000 Programming Manual

VC1000 Programming Manual

2

the servo drive. If you wish to reprogram the servo
drive, however, this manual provides the necessary
information.

Scope of Manual
This programming manual provides information for
setting up and programming the Design VC1000 servo
drive (figure 1). You should be familiar with basic
programming principles, and understand the desired
end result. The Design VC1000 servo drive is a “state
machine”, with some unique programming
requirements. You do not need to be familiar with
“state machine” programming to use this manual.
Refer to separate instruction manuals for information
about wiring and installation information.

Only personnel qualified through training or experience
should install, operate, and maintain a Design VC1000
servo drive. If you have any questions about these
instructions, contact your Fisher Controls sales office
before proceeding.

Drive Overview
The Design VC1000 servo drive is a digital drive
designed to run Type 330SA servo actuators. The
actuator contains a brushless DC servo motor, which
means there are no motor brushes to wear out. The
motor commutation is done electronically by the servo
drive, using the resolver inside the actuator housing to
provide position feedback to the drive.

The servo drive is microprocessor-based, and
therefore programmable. There are two programs
running in the drive. The first is the operating system
which provides for all the input and output functions,
calculates the pulse width modulation to the actuator,
and performs all the internal operations of the servo
drive. This program is stored in ROM chips inside the
drive, and is generally known as firmware. When the
drive powers up, the firmware is transferred into RAM
and executed from there to improve execution speed.

This programming manual focuses on the second
program, which is the application, or user
programming. This programming enables the drive to
perform the unique functions that you require. The
program is stored in nonvolatile “flash” memory, which
does not require any battery to maintain the program.

On power up, this program is transferred into RAM and
executed from there to improve speed.

User Interface
This programming manual applies to the drive and
user interface in Design VC1000 servo drives
delivered since the beginning of December 1999.

To access the drive interface, connect a PC to the
drive’s serial interface. A cable with a null modem, or a
null modem cable is required to make the connection.
The PC must be running a terminal program, such as
MicroSoft’s HyperTerminal, which is bundled and
distributed with Windows95. The communications
protocol is 9600 baud, 8 bits, 1 start bit, no parity.

When power is applied, one of three things will
happen, depending on the servo drive’s state when it
was shut down.

1. The PC will display the “start screen” shown in
figure 2. This must be displayed to access and modify
the drive programming, so this is the desired screen
display. A copy of this screen is also found in
Appendix A.

2. If the drive was set to run in the “auto” mode, the
drive application program is running and must be
stopped. Press the <Tab> key to stop the drive
program and the “start screen” in step 1 should be
displayed.

3. If the drive was left in the “Expert” prompt mode
there may be nothing displayed except a flashing
cursor. Press the <Tab> key to stop the drive program
(just in case it was running) and type sy pr no
<enter> to put the drive into the “Novice” prompt
mode. This turns full prompting on, and the “start
screen” in step 1 should be displayed.

The “start screen,” should now be displayed. This is
called the start screen because everything is accessed
through this screen. For example, typing program
display states <enter> will cause the drive to
display the machine states programmed into the drive.
Actually, only the first two letters of the command are
required. In the previous example, ����������	
�	��
will also cause the drive to display the machine states
programmed into the drive. The command sy pr ex
<enter> puts the drive into the “expert prompt” mode,
which turns off the above menu and limits the prompts
displayed. The command sy pr no <enter> puts
the drive into the “novice prompt” mode, turning the

VC1000 Programming Manual

3

Figure 2. The Start Screen

help (topic)
program select|add|edit| (state|action|transition) #index
program delete|display (state|action|transition) #index
program upload|download|save|load|new|run
variable name|#index|?
system comm|prompt|axis|screen|echo (value)
system io|mu|line|carriage|target|auto (value)
system save|load|clear
drive #n (flimit|rlimit) (value)
drive #n (current|velocity|position)
drive #n (external|internal|reference|stop reference)
drive #n (master|slaved|user|emulate stepper)
drive #n (enable|disable|upload|download|save|load|clear)
quit

above menu and full prompting on. From this point
forward, this manual will refer only to two letter
commands in the text and examples.

It is important to know that any time you make an error
in typing, use the <escape> key to back out and then
retype the line. Using the <backspace> key appears
to work, but actually the line is being built with
backspace characters embedded in it, which will
create errors.

Also, several of the menu items refer to a drive #n.
The Design VC1000 is a single axis controller, so the
drive will always be drive #1. The multi-axis capability
was kept in the firmware, anticipating future
development possibilities.

Loading and Saving Programs
The memory management feature requires some
instruction to use properly. As mentioned previously,
the application program is stored in flash memory, but
executed in RAM. A program is loaded into RAM by
typing pr lo <enter>. Typing pr sa <enter> will
save it back into the flash memory. If you edit the
program, it is changed only in RAM. If you cycle power
to the drive off and on again, the program changes will
be lost. If you want the changes saved, you must
type pr sa <enter> to write the program into the
flash memory before turning the power off.

Similarly, if you make changes in the drive or the
system set up, the dr #1 sa <enter>, and the sy
sa <enter> commands must be executed to save
the changes.

If the drive is in the “auto” mode, it will automatically
load the program out of the flash memory and begin

executing it. The auto mode is set by typing sy au on
<enter>, and it is turned off by typing sy au of
<enter>. Typing sy au ? <enter> will cause the
drive to display whether the auto mode is turned on or
off. If the auto mode is on and the application program
is running, pressing the TAB key will stop the running
program.

Loading and saving application files to disk will be
addressed later in this manual.

Basic Programming Principles
The servo drive is a “state” machine. The program
flows from one state to another, as directed by the
states as they are executed. Each state has a series of
actions, which define the function of the state. Each
state has at least one transition statement, which
directs the program flow. The states are like a series of
subroutines which start with a LABEL: and end with a
GOTO statement.

The action statements are executed only once, so
loops internal to the state are not permitted. The
transition can do conditional branching, so the
program flow can be directed into one of several
paths. Execution loops external to a state can be
formed by having a state’s transition section direct flow
to a second state, which then directs flow back to the
prior state. Useless infinite loops can be formed this
way, so care must be used to provide a proper exit
from the loop.

Also, it is possible for the transition section of a state
to loop upon itself. This allows the program to execute
the actions of a state, but not proceed until the
transition is met. For example, the valve program

VC1000 Programming Manual

4

initializes the drive and then disables it. The program
then loops on the transition of the state “disable” until
the enable drive command is true. Again, endless
loops can be formed this way, so caution must be
exercised.

System Variables, User Variables and
Constants
The servo drive programming uses two types of
variables; system variables and user variables. All
variables are global in scope, that is, any variable can
be used anywhere, and if it is changed in one state, it
is changed for all states.

System Variables
The system variables are used to send data to the
hardware and to monitor what is happening in the
drive. For example, the variable requested
pos.(#1) holds the position the drive is following.
Changing this variable causes the drive to move the
valve plug to a different position. Similarly, the variable
actual pos.(#1) holds the value representing the
actual, or current, valve position. The value can be
monitored by the application programming to
determine if the valve plug is out of position, and by
how much.

The function and definition of the system variables are
predetermined by the drive hardware and firmware.
Although they are accessible to the application
program, their meaning cannot be changed. Following
is a brief list of several of the system variables. (A
complete list of the system variables is found in
Appendix D.)

requested pos.(#1) The target position for the
valve when the drive is in position mode. The value is
the number of encoder counts from the reference
(zero) position.

requested vel.(#1) The target velocity for the
valve plug when the drive is in velocity mode. The
value is in encoder counts per time period. Currently
the time period is one millisecond.

requested cur(#1) The target current when the drive is
in the current mode. The current determines the
torque, which determines the force. The value is a
number with 0 representing no current and 32678
representing the maximum continous current the drive
can produce.

actual pos.(#1) The actual plug position, which
will be different than he requested position if the drive
is moving the plug to a new position.

actual vel.(#1) The actual valve plug velocity,
which will be different than the requested velocity if the
plug is accelerating or decelerating.

Drive Current Command The actual current
command to the actuator. This is useful during the
valve plug homing and calibration procedure. The
valve is closed in velocity mode. If the drive current
command suddenly increases, it can be assumed the
valve plug is on the valve seat.

prop. gain(#1) This is the proportional gain, a
tuning parameter. See Appendix E for details on its
use.

deriv. gain(#1) This is the derivative gain, a
tuning parameter. See Appendix E for details on its
use.

int. gain(#1) This is the integral gain, a tuning
parameter. See Appendix E for details on its use.

feed fwd. gain(#1) This is the feed forward gain,
a tuning parameter. See Appendix E for details on its
use.

gain scale(#1) This is gain scale, a tuning
parameter. See Appendix E for details on its use.

integral limit(#1) This is the low pass filter, a
tuning parameter. See Appendix E for details on its
use.

Analog Position Input This is the input for the 4
to 20 mA command signal from the control room.

Auxiliary Analog Input This is a secondary
analog input. Its use is not specifically defined, but it
can be used as a position feedback to eliminate the
homing after a loss of power incident.

A complete list of the system variables is found in
Appendix D.

User Variables
User variables are defined by the programmer when
writing application, or user programs. When entering
the actions for a state, the drive system prompts for
the variable to use. The variable can be selected by
either entering its index number or by typing its name.
Whenever a new variable name is entered, the drive’s
user interface prompts:

The variable does not exist
Press <ESC> if you do NOT want to add it
to the list
Press <ENTER> to add it to the list

Pressing <ENTER> adds the variable to the list of
variables and assigns an index number. Typing va ?

VC1000 Programming Manual

5

from the start menu displays the variables in the list
one screen full at a time. The new variable will have
been added to the end of the list.

Constants

Constants used in the program are entered and
handled by the user interface as if they were user
variables. Whenever a constant is entered, the drive’s
user interface prompts:

The variable does not exist
Press <ESC> if you do NOT want to add it
to the list
Press <ENTER> to add it to the list

Pressing <ENTER> adds the constant to the list of
variables and assigns an index number. Typing va ?
from the start menu displays the variables in the list
one screen full at a time. The new constant will have
been added to the end of the list.

Integer Math

All variables are 32-bit integers. The range of numbers
that can be expressed are ±2,147,483,648. All math is
fixed decimal; there are no floating point math
routines. When a division operation is performed the
result is truncated, so all the values to the right of the
decimal point are lost. For example, 10/6 = 1, not
1.66667 and not 2. For this reason, some numbers are
prescaled by multiplying by 32 or 64. When the integer
math is done, a number that is 32 or 64 times too big
is obtained. That number is compensated for in the
hardware and firmware, with an effective gain in some
decimal points worth of precision.

Also, for this same reason, when math operations are
performed, all the multiplication operations possible
should be done before the division operations. This
reduces the truncation error. For example, refer to the
current formula below.

��������
���������	
����� ������

���

If the desired torque is 60%, and the division is
performed before the multiplication, the result is zero
(60 / 100 =0; 0 * 32,768 =0) instead of 19,660 (60 *
32,768 =1,966,080; 1,966,080 / 100 = 19,660.8; which
truncates to 19,660). This may be an extreme
example, but it is a worthy example of what may
happen if the order of math operations is not done
carefully.

More About States
A state consists of three parts: label, actions, and
transitions.

Labels
Every state must have a label. The label may be mixed
upper and lower case and it may contain spaces.
Examples of some typical state labels are: Init0, Set
Position Mode, or Not in Foldback. Generally, the label
should express in some way what the state does; it
makes troubleshooting easier.

Actions
A state does not require any action in the action
section. A state may be used solely to perform logical
branching. If it does have actions, only one action can
be performed per line of the program. For example,
two variables can be multiplied together, or one
subtracted from another, but subtracting and
multiplying operations are not permitted in the same
line.

The maximum number of actions in one state is 25
actions.

As mentioned previously, the action statements are
executed only once, and then the program execution
moves on to the transition portion of the state.

Transitions
At least one transition statement is required for a state.
The transition statements allow conditional, or logical,
tests and directs the program flow from one state to
another, dependant upon the result of the test. For
example, the transition of a state to another may
depend on the magnitude of a variable, or whether or
not an input line is high or low.

Unlike actions, the transition portion of a state may
loop upon itself. For example, if a drive fault condition
is detected, the program flow may be directed to a
state that disables the drive and then loops upon itself
until the fault is cleared.

Also, a transition may direct program flow back to the
beginning of the state it is in. For example, a state
labeled Disable Drive could have a transition
statement GOTO STATE Disable Drive NEXT. Of
course there must also be at least one other transition
statement to provide an exit from this loop.

Also, the order of the transition statements is
important. The program evaluates the transition
statements in the order given. The first statement that
evaluates as “True” will determine the next state

VC1000 Programming Manual

6

executed. For example, if the state Disable Drive has
the transitions, GOTO STATE Disable Drive NEXT;
and then the statement GOTO STATE Enable Drive
NEXT, IF Faults Flag = 0; the program will never leave
the state Disable Drive, even if the variable Faults Flag
= 0.

The maximum number of transitions in one state is 25
transitions.

Another unique feature of the hardware and firmware
is the sense of the digital inputs is inverted. The inputs
are optically isolated and when current is flowing
through the isolator’s LED, the input is considered a
logical low. For example, the transition statement
GOTO STATE Enable NEXT, IF INPUT Number2
ON GROUP 0 IS LOW will not test true until there is
current flowing in the opto-isolator’s LED for digital
input DI2.

More Specifics About Working With
The Drive System
This portion of the VC1000 programming manual
focuses on some of the specifics required to
successfully enter, examine or edit an application
program.

The section entitled Selecting, Editing, and Adding a
State, lists the requirements to access the drive. It is
assumed the monitor is displaying the “start screen”.

CAUTION

Before entering or editing an application
program, turn the Auto Run feature off to
avoid creating a possible infinite loop.

A word of caution needs to be added here. Before
entering or editing an application program, turn the
Auto Run feature off. Typing sy au <enter> will
cause the drive to display if the Auto Run feature is
ON or OFF. The auto run is turned OFF by typing
 sy au 0.

The reason for doing this is that it is possible to put the
drive into an infinite loop where the only way to exit the
loop is to turn off the power, wait a few seconds and
then turn the power back on. If the Auto Run feature is
ON, and if the program had been saved, the defective
program will reload and begin execution again. If the
program goes into an infinite loop again, you will not
be able to edit the program to fix the program problem.

Disable the Auto Run until the program has been fully
tested and known to be stable and error free. The Auto
Run can be turned ON again by typing sy au 1.

Selecting, Editing, and Adding a State
If the statement pr di st <enter> is typed into the
terminal keyboard, the drive will display a table
showing the states that have been programmed into
the drive. Every state is identified by an index number
which is displayed to the left of the states. When the
program is executed, the program begins with state #1
and the flow from there depends on the transition
statements.

One of the indices has an asterisk (*) beside it, which
marks the “selected” state. If any keyboard instructions
are executed to display or edit state content, the
selected state will be displayed or edited. For example,
if the asterisk is beside state #5, typing pr di ac
<enter> will cause the actions of state number 5 to
be displayed on the terminal monitor. Typing pr di
tr <enter> will cause the transitions of state
number 5 to be displayed.

The state is selected by typing pr se st #n
<enter>, where n represents the index of the desired
state. Note that the # must be typed. For example,
typing pr se st #5 <enter> will select state
number 5.

Once selected, the state remains the selected state
until another state is specifically selected. Running an
application program resets the selected state to index
#1.

A state can be deleted by typing pr de st #n
<enter>, where n is the index for the state to be
deleted. For example, pr de st #5 <enter> will
delete state number 5.

A state can be added by typing pr ad st #n, where
n is the index of the state to be added. You will be
prompted to type in the name of the state being added.
If n is less than the total number of states already
defined, the new state will be inserted at the point
indicated by the new state number. For example, pr
ad st #4 <enter> will add a state number 4. If
there were already 5 states defined, the old state
number 4 will become state number 5 and the old
state number 5 will become state number 6.

Selecting, Editing, and Adding an Action
If the statement pr di ac <enter> is typed into the
terminal keyboard, the drive will display a table
showing the actions that have been programmed into
the drive for the selected state. Every action is

VC1000 Programming Manual

7

identified by an index number which is displayed to the
left of the actions. When the state is executed, the
program begins with action #1 and executes the
remaining actions in the order displayed.

An action can be deleted by typing pr de ac #n
<enter>, where n is the index for the action to be
deleted. For example, pr de ac #5 <enter> will
delete action number 5 of the selected state.

An action can be added by typing pr ad ac #n
<enter>, where n is the index of the action to be
added. If n is less than the total number of actions
already defined, the new action will be inserted at the
point indicated by the new action index number. For
example, pr ad ac #4 <enter> will add an action
number 4. If there were already 5 actions defined, the
old action number 4 will become action number 5 and
the old action number 5 will become action number 6.

After typing pr ad ac #n <enter>, a list of all
possible actions will be listed, one screen at a time,
with each possible action identified by a numerical
index. You will be prompted to type in the index of the
action on that list, which is being added to the selected
state. For example, typing pr ad ac #n <enter>
and when prompted typing #3 <enter>, you would
then be prompted for the variable name you want the
result in and then for the two variables you want to add
together. Thus an action statement is built up by the
drive operating system.

As you work with the program you will notice that the
variables are also identified by a index number. Once
the variable has been defined, the index number can
be typed in its place to use the variable. The actual
variable name will show in the program listing.

For an example of how a typical statement is entered,
multiply the variable temp by 32768 and store the
results in variable requested pos.(#1).
Furthermore, the action is being added as action # 8 in
state #4. The index of the multiply action is #5. Also
assume variable temp is variable index #66, constant
32768 is variable index #49 and requested pos.(#1) is
variable index #1. The sequence of commands typed
into the terminal keyboard is:

pr se st #4 <enter>

pr ad ac #8 <enter>

When prompted for the action, type #5 <enter>

When prompted for the result variable, type #1
<enter>

When prompted for the first variable or constant, type
#66 <enter>

When prompted for the second variable or constant,
type #49 <enter>

At this point the system returns to the start screen. If
the command pr di ac <enter> is typed in, you
will see that action number 4 is displayed as:

MULTIPLY: requested pos.(#1) = temp *
32768.

Editing an action works the same way. Type pr ed
ac #n <enter>, where n is the index of the action
you wish to edit. You will be prompted to enter the
definition of the action just as when adding an action.

Remember, when altering the program actions, only
the program in active RAM is being altered. If you wish
to save the changes, type pr sa <enter>, to
transfer the program into the flash memory, before
shutting down the drive.

Selecting, Editing, and Adding a
Transition
Working with transitions is similar to working with
actions. If the statement pr di tr <enter> is typed
into the terminal keyboard, the drive will display a table
showing the transitions that have been programmed
into the drive for the selected state. Every transition is
identified by an index number which is displayed to the
left of the transitions. When the state is executed, the
program begins with transition #1 and executes the
remaining transitions in the order displayed. If the
conditions of the test in a line tests true, the transition
action is taken. If no transition condition tests true, the
last transition in the list will be taken.

A transition can be deleted by typing pr de tr #n
<enter>, where n is the index for the transition to be
deleted. For example, pr de tr #5 <enter> will
delete transition number 5 of the selected state.

An transition can be added by typing pr ad tr #n
<enter>, where n is the index of the transition to be
added. If n is less than the total number of transitions
already defined, the new transition will be inserted at
the point indicated by the new transition index number.
For example, pr ad tr #4 <enter> will add a
transition number 4. If there were already 5 transitions
defined, the old transition number 4 will become
transition number 5 and the old transition number 5 will
become transition number 6.

After typing pr ad tr #n <enter>, a list of all
possible transitions will be listed, one screen at a time,
with each possible transition identified by a numerical
index. You will be prompted to type in the index of the
transition on that list which is being added to the

VC1000 Programming Manual

8

selected state. For example, typing pr ad tr #n
<enter> and when prompted typing #3 <enter>,
you would then be prompted for the state name you
want the program to go to. Thus a transition statement
is built up by the drive operating system.

For an example of how a typical statement is entered,
go to state Seat Found if the commanded current
exceeds the seat current limit value. The index number
for the transition IS GREATER is #31. The index
number for Seat Found is #10. The commanded seat
current is the variable Drive Current Command
and its variable index is #46. The seat current limit is
variable DAC Seat Current and its variable index is
#81. Furthermore, the transition is being added as
transition # 8 in state #9. The sequence of commands
typed into the terminal keyboard is:

pr se st #9 <enter>

pr ad tr #8 <enter>

When prompted for the transition, type #31 <enter>

When prompted for the variable to test, type #46
<enter>

When prompted for the test variable or constant, type
#81 <enter>

At this point the system returns to the start screen. If
the command pr di tr <enter> is typed in, you
will see that transition number 8 is displayed as:

GOTO STATE Seat Found IF Drive Current
Command > DAC Seat Current

Editing a transition works the same way. Type pr ed
tr #n <enter>, where n is the index of the
transition you wish to edit. You will be prompted to
enter the definition of the transition just as when
adding a transition.

Remember, when altering the program transitions,
only the program in active RAM is being altered. If you
wish to save the changes, type pr sa <enter>, to
transfer the program into the flash memory, before
shutting down the drive.

Programming Standards
There are very few programming standards that need
to be adopted to improve readability and
troubleshooting.

All the user variable parameters should be defined in
the first state to be executed (state index #1), and the
state should be labeled Init0. The parameters to

define are the application specific information such as
tuning parameters, stroke length, resolver counts per
revolution, actuator lead-screw pitch, maximum
actuator speed, and so forth. If the number of action
statements required exceeds 25 statements, the last
statement should be a comment indicating there are
more user parameters in the next state. The concept
here is to put all the variables and parameters that
might be altered or adjusted in the field in one place.

All the user variables (variables with an index number
greater than 45) must be defined or initialized at the
beginning of the program. Use states labeled Init1,
Init2, etc., to perform the initializations not done in
Init0. Typically these will be system flags, and
converting the user input variables from Init0 into
numbers the servo drive uses. Some of the useful
conversion formulas are found in Appendix D.

The first line of Init0 must be a comment line with
the program name. The second line must be a
comment with the name or initials of the person who
wrote the program and the date it was written. The
third line, must be a comment showing the Revision
level, the initials of the person who revised it, and the
date of the revision.

The fourth line must be a printed text line displaying
the Fisher part number for the application program and
revision level. It is also recommended a fifth line be
added which will display a brief description of the
program function.

For example, the first five lines of Init0 might look
like:

/* ACME Fuel Valve

/* DJW 12/15/99

/* Rev C, DJW 6/26/00

PRINT: 14B4002X012 Rev C

PRINT: ACME Fuel PN2201-38 Rev A

Saving and Retrieving Program
Files to Disk
Application programs can be saved to disk or recalled
from disk and loaded into the drive. The drive
operating system does not have the capability to do
this directly. An IBM compatible PC must be
connected to the servo drive via a serial cable with a
null modem, or a null modem cable. Most likely this
can be the same computer used to program the drive

VC1000 Programming Manual

9

because the interconnection requirements are the
same.

Retrieve and Upload a Program Into a
Drive
Connect a PC to the drive’s serial interface. Using a
terminal program, get the drive running so the start
screen is displayed. Quit the terminal program by
closing the terminal program. Do Not type qu
<enter> as this will stop the drive, and the drive
must be running to perform the rest of this procedure.

Execute the program VC1000a.exe on the PC. This
causes the PC to display a screen that looks like the
start screen. At this point the PC is emulating many of
the servo drive functions.

Set serial communication to port COM1: by typing sy
co #1 <enter>.

Retrieve an application program from disk and load it
into the PC by executing the commands pr lo
<enter>. You will then be prompted:

Do you want to load the program?

Press <ESC> to cancel or

<Return>to begin loading:

Press <enter> and you will be prompted:

- Recalling program from a file

What file do you wish to read?:

Type in the file name, including the path if required.
For example, to read a file called FISHER01 from drive
A, type A:FISHER01 <enter> The program file is
recalled from disk and loaded into the PC memory.

Execute the upload command by typing pr up
<enter> and the program data is transferred to the
servo drive.

Similarly, drive setup parameters can be recalled from
disk and uploaded to the servo drive. Assuming the
program VC1000a.exe is still running on the PC and
the communications port is still COM1:, execute the
command dr #1 lo <enter> to load the drive
parameters into the PC’s RAM. Execute the command
dr #1 up <enter> to transfer the drive parameters
into the servo drive. Notice that this command never
asks for a file name or path. The file transferred is
named Drive1.sys and is located in the same
directory as the VC1000.exe program.

At this point, all the data uploaded is in the servo
drive’s RAM memory, but has not been permanently
stored. To save the data, quit the program
VC1000.exe. Restart the terminal program and the
familiar start screen will be displayed. Save the
program by typing pr sa <enter>. Save the system
parameters by typing sy sa <enter>. Save the
drive parameters by typing dr #1 sa <enter>.

You may wish to have both the terminal program and
the VC1000.exe programs running on the PC at the
same time, but it cannot be done. If both are running,
they get confused with each other during the data
transfers and either the transfer will not occur, or the
data is corrupted during the transfer. Have only one
program running at a time, as mentioned above.

Download and Save a Program From a
Drive
Connect a PC to the drive’s serial interface. Using a
terminal program, get the drive running so the start
screen is displayed. If the program to be saved onto
disk is still in the flash memory, type pr lo <enter>
to transfer the program into RAM. Type sy lo
<enter> to transfer the system parameters into RAM,
and type dr #1 lo <enter> to load the drive
parameters into RAM.

Quit the terminal program by closing the terminal
program. Do Not type qu <enter> as this will stop
the drive, and the drive must be running to perform the
rest of this procedure.

Execute the program VC1000.exe on the PC. This
causes the PC to display a screen that looks like the
start screen. At this point the PC is emulating many of
the servo drive functions.

Set serial communication to port COM1: by typing sy
co #1 <enter>.

Execute the program download command by typing pr
do <enter> and the program data is transferred from
the servo drive to the PC. Type dr #1 do <enter>
to transfer the drive parameters from the drive to the
PC.

The application program can now be saved to a disk
by executing the commands pr sa <enter>. You
will then be prompted:

Do you want to save the program?

Press <ESC> to cancel or

<Return>to begin saving:

Press <enter> and you will be prompted:

VC1000 Programming Manual

10

- saving program to a file

What file do you wish to use?:

Type in the file name, including the path if required.
For example, to save a file called FISHER01 to drive
A, type A:FISHER01 <enter> The program file is
transferred from the PC memory onto the disk.

Similarly, drive setup parameters can be stored on
disk. Execute the command dr #1 do <enter> to
transfer the drive parameters into a disk file. Notice
that this command never asks for a file name or path.
The file transferred is named Drive1.sys and is
located in the same directory as the Simacon.exe
program.

Again, you may wish to have both the terminal
program and the VC1000.exe programs running on the
PC at the same time, but it cannot be done. If both are
running, they get confused with each other during the
data transfers and either the transfer will not occur, or
the data is corrupted during the transfer. Have only
one program running at a time, as mentioned above.

Example—Entering an Application
Program
Following is an example of how to enter a drive
program. The example program is found in Appendix
F. Included is a state diagram to show the program
flow and a description of the function of each program
state. The program’s function is to control a valve
where the valve plug is pushed down to close the
valve, which means the actuator extends to close the
valve.

If starting with a new drive, without any programming
loaded in it, hook up the personal computer that will be
used to enter the program to the serial port of the
computer and the serial port of the drive. Remember
that the cable must be a null-modem type that
switches pins 2 and 3 at one end of the cable, or a null
modem must be used as part of the interconnection.
(See the section entitled The User Interface). Connect
a power cable to the “L1/DC+”, “L2/DC–“, and “ground”
terminals, as appropriate for the power being used. An
actuator does not need to be connected to the drive to
program it, but a valve and actuator must be
connected to the drive to test the programming.

A jumper must be placed between the “I/O Common”
and the “24V Common” on the input connector.
Another jumper must be connected between the
“Isolated +24VDC” and “DI2” of the input connector. It

must be possible to temporarily disconnect the second
jumper, so some type of switch could be a part of this
connection. In normal usage, the connection is closed
to enable the drive. If the drive becomes disabled for
any reason, the jumper connection must be broken
and re-established to re-enable the drive.

Power up the PC and get the terminal program
running. (See the section entitled The User Interface)
Apply power to the servo drive. At this point the start
screen should be seen on the PC’s display. Turn off
the auto run feature if it is on. Type sy au 0
<enter> to turn the auto run feature off. (See the
section entitled More Specifics About Working With the
Drive System.)

The program is entered by typing commands into the
PC keyboard. The first step is to declare the states for
the program. The states must be established first by
adding a state and then naming it. Later, the actions
and transitions are added to the state. For example, to
add the state Init0, the command pr ad st
#1<enter> is typed. The drive prompts:

State is ** New State **.

Press <ESC> to cancel or Enter the name of the state:

The name Init0 <enter> is typed in. The state is
now declared and named, and ready for the actions
and transitions to be defined. States can be added and
edited in almost any order. A new state can be
inserted between two existing states. Note that the
program execution always begins with state number 1.

To add actions, select the desired state and then type
the add actions command and the action index
number. The drive will prompt you, depending on the
action being added. For example, using the example
program, let’s say we want to add action #8 of state
Init0. It is assumed actions 1 through 7 have already
been added. The state is selected by typing pr se
st #1 <enter>. Add action #8 by typing pr ad ac
#8. The drive will display a list of actions (See
Appendix B). The SET action is index #2 so following
the servo drive prompting type #2 <enter>. The
drive will display a list of variables and prompt for the
index of the variable to assign the valve to. The
variable has not been defined yet so type Stroke
<enter>. The drive prompts:

The variable does not exist.

Press <ESC> if you do NOT want to add it to the list
Press <ENTER> to add it to the list:

Type <enter> again to establish the new variable
name. The drive then prompts for the value to assign
to the variable. The value to enter is the constant
–1125 because the stroke length is 1.125 inches, and

VC1000 Programming Manual

11

the negative sign indicates the actuator must retract to
open the valve. Type –1125 <enter> and the drive
will prompt:

The variable does not exist.

Press <ESC> if you do NOT want to add it to the list
Press <ENTER> to add it to the list:

Type <enter> again to establish the new constant
name. Remember, the drive treats variables and
constants in the same way. (See the section entitled
System Variables, User Variables and Constants)

To add transitions, select the desired state and then
type the add transitions command and the transition
index number. The drive will prompt you, depending
on the transition being added. For example, using the
example program, let’s say we want to add transition
#1 of state Init0. The state is selected by typing pr se
st #1 <enter>. Add transition #1 by typing pr ad
tr #1. The drive will display a list of transitions (See

Appendix C). The “AS THE NEXT STATE” transition is
index #3 so following the servo drive prompting type
#3 <enter>. The drive will display a list of states and
prompt for the index of the state the program flow is to
continue to. Note that the state must have been
previously declared for it to show up on the list.
Continue to state Init1, which is index #2. At the
prompt type #2 <enter>.

Using these techniques, the program is entered one
statement at a time until the entire prgram has been
entered. It is wise to save the program from time to
time by typing pr sa <enter>. The data has only been
entered in RAM and will be lost if the power is
removed from the servo drive, unless the save
command has been used. Once the program has been
debugged and it is stable and functioning as expected,
the auto run feature can be turned on by typing the
command sy au 1. The final program can be saved
to a floppy disk by following the method described in
the section entitled Saving and Retrieving Program
Files to Disk.

VC1000 Programming Manual

12

Appendix A—The Start Screen
help (topic)
program select|add|edit| (state|action|transition) #index
program delete|display (state|action|transition) #index
program upload|download|save|load|new|run
variable name|#index|?
system comm|prompt|axis|screen|echo (value)
system io|mu|line|carriage|target|auto (value)
system save|load|clear
drive #n (flimit|rlimit) (value)
drive #n (current|velocity|position)
drive #n (external|internal|reference|stop reference)
drive #n (master|slaved|user|emulate stepper)
drive #n (enable|disable|upload|download|save|load|clear)
quit

VC1000 Programming Manual

13

Appendix B—Table of Possible
Actions
Following is a listing of all the possible actions that can
be taken in a state. Each action includes a description

of the action and an example programming statement.
When programming the drive, the drive operating
system prompts for the variables and constants
needed and builds the statement. The example shows
how the final statement would look.

Index Programming Action Description and Example
#1 COMMENT: string Puts a comment in the programming text

/* This is a comment
#2 SET: var = var | value Assigns a value to a variable or constant. If the variable or constant is new, it defines

the variable of constant
SET: requested pos.(#1) = pos counts

#3 ADD: var = var | const + var | const Adds two variables or constants and assigns the result to a variable.
ADD: Foldback Timer = Foldback Timer + 1

#4 SUBTRACT: var = var | const – var | const Subtracts one variable or constant from another variable or constant and assigns the
result to a variable.
SUBTRACT: temp = Input Signal Lost - 4000

#5 MULTIPLY: var = var | const * var | const Multiples two variables or constants together and assigns the result to a constant.
MULTIPLY: temp = temp * ADC Range

#6 DIVIDE: var = var | const / var | const Divides one variable or constant by another variable or constant and assigns the result
to a variable.
DIVIDE: temp = Filtered Seat Current / 32768

#7 INCREMENT: var = var + 1 Increments a variable by 1
INCREMENT: temp

#8 DECREMENT: var = var - 1 Decreases a variable by 1
DECREMENT: temp

#9 NEGATE: var = -var Assigns the negative value of a variable to the variable.
NEGATE: temp = –temp

#10 AND: var = var | const AND var | const Performs a logical AND of two variables or constants and assigns the result to a
variable
AND: temp = Homed AND Number1

#11 OR: var = var | const OR var | const Performs a logical OR of two variables or constants and assigns the result to a variable
OR: temp = Homed OR Number2

#12 NOT: var = NOT var Performs a logical NOT of a variable and assigns the result to a variable
NOT: temp = NOT Homed

#13 WAIT: n (MICROSECONDS) Pauses program execution for n microseconds.
WAIT: 200

#14 PRINT DECIMAL: var | const Prints the decimal value of a variable or constant
PRINT DECIMAL: MIN POS CNTS

#15 PRINT HEX: var | const Prints the hexadecimal value of a variable or constant
PRINT HEX: MIN POS CNTS

#16 PRINT TEXT: string | format Prints a text string on a PC running a terminal program and which is connected to the
drive’s serial port.
PRINT: Initializing… \n

#17 ENABLE DRIVE: drive #n Turns on current to the servo actuator.
ENABLE DRIVE: drive #1

#18 DISABLE DRIVE: drive #n Turns off current to the servo actuator.
DISABLE DRIVE: drive #1

#19 REFERENCE DRIVE: drive #n
#20 STOP REFERENCING DRIVE: drive #n
#21 POSITION MODE: drive #n Puts the drive into position following mode. The drive will adjust the motor current and

speed as needed to follow the value if the variable requested pos.(#1).
POSITION MODE: drive #1

#22 Not Implemented. Reserved for future use.
#23 Not Implemented. Reserved for future use.
#24 VELOCITY MODE: drive #n Puts the drive into a constant velocity mode to drive the actuator at a constant speed.

Be sure to set the variable requested vel.(#1) to the desired velocity before putting the
drive into velocity mode.
VELOCITY MODE: drive #1

VC1000 Programming Manual

14

Index Programming Action Description and Example
#25 CURRENT MODE: drive #n Puts the drive into a constant current mode to drive the actuator at a constant speed.

Be sure to set the variable requested cur.(#1) to the desired current before putting the
drive into current mode. The current determines the motor torque, which determines to
output force, so the current mode is equivalent to a constant force mode.
CURRENT MODE: drive #1

#26 Not Implemented. Reserved for future use.
#27 SET OUTPUT HIGH: output var | const Sets one digital output line high.

SET OUTPUT HIGH: Output 2 of Group 0
#28 SET OUTPUT LOW: output var | const Sets one digital output line low.

SET OUTPUT LOW: Output 2 of Group 0
#29 SET ALL OUTPUTS: output var | const Individually sets all digital output lines high or low, depending on a bit pattern.

SET ALL OUTPUTS: Output Flags of Group 0
#30 READ ALL INPUTS: var from Group 0 Reads all the inputs of a digital input group and assigning the result to a variable. The

drive has only one input group, which is Group 0
READ ALL INPUTS: INPUT Stroke from Group 0

#31 SET BIT PATTERN: var | const IN var Sets a bit pattern, defined by a variable or constant, in a variable
SET BIT PATTERN: SET BIT PATTERN OF 250 IN Foldback Current

#32 CLEAR BIT PATTERN: var | const IN var Clears a bit pattern, defined by a variable or constant, in a variable.
CLEAR BIT PATTERN: CLEAR BIT PATTERN OF 250 IN Foldback Current

#33 STOP PROGRAM: Stops the program execution. Equivalent to pressing the <TAB> key on the terminal
keyboard.
STOP PROGRAM

#34 Not Implemented. Reserved for future use.
#35 Not Implemented. Reserved for future use.
#36 Not Implemented. Reserved for future use.
#37 Not Implemented. Reserved for future use.
#38 Not Implemented. Reserved for future use.
#39 ENABLE FORWARD LIMIT SWITCH: drive #n Activates the forward limit switch. It can be either active high or active low.

ENABLE FORWARD LIMIT SWITCH (ACTIVE HIGH) FOR DRIVE #1
#40 DISABLE FORWARD LIMIT SWITCH: drive #n Deactivates the forward limit switch.

DISABLE FORWARD LIMIT SWITCH FOR DRIVE #1
#41 ENABLE REVERSE LIMIT SWITCH: drive #n Activates the reverse limit switch. It can be either active high or active low.

ENABLE REVERSE LIMIT SWITCH (ACTIVE HIGH) FOR DRIVE #1
#42 DISABLE REVERSE LIMIT SWITCH: drive #n Deactivates the reverse limit switch.

DISABLE REVERSE LIMIT SWITCH FOR DRIVE #1

VC1000 Programming Manual

15

Appendix C—Table of Transitions
Following is a list of all the possible state transitions.
Each transition includes a description of the transition
and an example programming statement. When

programming the drive, the drive operating system
prompts for the states, variables and constants
needed and builds the statement. The example shows
how the final statement would look.

Index Programming Event Description and Example
#1 COMMENT: string Adds a comment to the transitions

/* This is a comment
#2 RESCAN TRANSITIONS Rescans the transition of a state. There must be another transition statement to provide

and exit from the state.
RESCAN TRANSITIONS

#3 AS THE NEXT STATE: State #n Transfers to another state without any logical test.
GOTO STATE Init2 NEXT

#4 RESCAN TRANSITIONS IF DRIVE IS IN
POSITION: drive #n

Rescans the state transitions if the drive is in position.
RESCAN TRANSITIONS IF DRIVE #1 IS IN POSITION

#5 IF DRIVE IS IN POSITION: State #n, drive #n Transfers to another state if the drive is in position.
GOTO STATE HoldPos NEXT, IF DRIVE #1 IS IN POSITION

#6 RESCAN TRANSITIONS IF DRIVE IS NOT IN
POSITION: Drive #n

Rescans the state transitions if the drive is not in position.
RESCAN TRANSITIONS IF DRIVE #1 IS NOT IN POSITION

#7 IF DRIVE IS NOT IN POSITION: State #n,
drive #n

Transfers to another state if the drive is not in position.
GOTO STATE Home2 NEXT, IF DRIVE #1 IS NOT IN POSITION

#8 RESCAN TRANSITIONS IF DRIVE IS
ENABLED: drive #n

Rescans the transitions if the drive is enabled.
RESCAN TRANSITIONS IF DRIVE IS ENABLED

#9 IF DRIVE IS ENABLED: State #n, drive #n Transfers to another state if the drive is enabled.
GOTO STATE Read Position NEXT, IF DRIVE #1 IS ENABLED

#10 RESCAN TRANSITIONS IF DRIVE IS
DISABLED:
drive #n

Rescans the transitions if the drive is disabled.
RESCAN TRANSITIONS IF DRIVE IS DISABLED

#11 IF DRIVE IS DISABLED: State #n, drive #n Transfers to another state if the drive is disabled.
GOTO STATE Enable Drive NEXT, IF DRIVE #1 IS DISABLED

#12 RESCAN TRANSITIONS IF DRIVE HAS
FAULTED: drive #n

Rescans transitions if the drive has faulted
RESCAN TRANSITIONS IF DRIVE #1 HAS FAULTED

#13 IF DRIVE HAS FAULTED: State #n, drive #n Transfers to another state if the drive has faulted
GOTO STATE Fault Detected NEXT, IF DRIVE #1 HAS FAULTED

#14 RESCAN IF DRIVE HAS NOT FAULTED:
Drive #n

Rescans transitions if the drive has not faulted
RESCAN TRANSITIONS IF DRIVE #1 HAS NOT FAULTED

#15 IF DRIVE HAS NOT FAULTED: State #n, drive
#n

Transfers to another state if the drive has no faults
GOTO STATE Read Command NEXT, IF DRIVE #1 HAS NOT FAULTED

#16 RESCAN TRANSITIONS IF HIGH ON INPUT:
RESCAN TRANSITIONS IF INPUT var | const
ON GROUP 0 IS HIGH

Rescans the transitions if one of the digital inputs is high
RESCAN TRANSITIONS IF INPUT Number2 ON GROUP 0 IS HIGH

#17 HIGH ON INPUT:
GOTO state #n NEXT, IF INPUT var | const
ON GROUP 0 IS HIGH

Transfers to another state if one of the digital inputs is high
GOTO STATE Disable NEXT, IF INPUT Number2 ON GROUP 0 IS HIGH

#18 RESCAN TRANSITIONS IF LOW ON INPUT:
RESCAN TRANSITIONS IF INPUT var | const
ON GROUP 0 IS LOW

Rescans the transitions if one of the digital inputs is low
RESCAN TRANSITIONS IF INPUT Number2 ON GROUP 0 IS LOW

#19 LOW ON INPUT:
GOTO state #n NEXT, IF INPUT var | const
ON GROUP 0 IS LOW

Transfers to another state if one of the digital inputs is low
GOTO STATE Enable NEXT, IF INPUT Number2 ON GROUP 0 IS LOW

#20 RESCAN TRANSITIONS IF RISING EDGE
ON INPUT:
RESCAN TRANSITIONS IF THERE IS A
RISING EDGE ON INPUT var | const ON
GROUP 0

Rescan transitions of the state if the rising edge of a selected input is detected
RESCAN TRANSITIONS IF THERE IS A RISING EDGE ON INPUT number1 ON
GROUP 0

#21 RISING EDGE ON INPUT:
GOTO STATE State #n NEXT, IF THERE IS A
RISING EDGE ON INPUT var | const ON
GROUP 0

Transfers to another state if the rising edge of a selected input is detected
GOTO STATE Found Seat NEXT, IF THERE IS A RISING EDGE ON INPUT number1
ON GROUP 0

#22 RESCAN TRANSITIONS IF FALLING EDGE
ON INPUT:
RESCAN TRANSITIONS IF THERE IS A
FALLING EDGE ON INPUT var | const ON
GROUP 0

Rescan transitions of the state if the falling edge of a selected input is detected
RESCAN TRANSITIONS IF THERE IS A FALLING EDGE ON INPUT number1 ON
GROUP 0

VC1000 Programming Manual

16

Index Programming Event Description and Example
#23 FALLING EDGE ON INPUT:

GOTO STATE State #n NEXT, IF THERE IS A
FALLING EDGE ON INPUT var | const ON
GROUP 0

Transfers to another state if the falling edge of a selected input is detected
GOTO STATE Found Seat NEXT, IF THERE IS A FALLING EDGE ON INPUT number1
ON GROUP 0

#24 RESCAN IF INPUT GROUP EQUAL:
RESCAN TRANSITIONS IF GP Inputs OF
GROUP 0 = var | const

Rescans transitions if the input bit pattern of group 0 equals another variable or
constant
RESCAN TRANSITIONS IF GP Inputs OF GROUP 0 = Fault Flag

#25 IF INPUT GROUP EQUAL:
GOTO STATE State #n, IF GP Inputs OF
GROUP 0 = var | const

Transfers to another state if the input bit pattern of group 0 equals another variable or
constant
GOTO STATE Disable Drive, IF GP Inputs OF GROUP 0 = Reset Flag

#26 RESCAN TRANSITIONS IF LESS:
RESCAN TRANSITIONS IF var < var | const

Rescans transitions if a variable is less than another variable or constant
RESCAN TRANSITIONS IF temp < 0

#27 IS LESS:
GOTO STATE State #n, IF var < var | const

Transfers to another state if a variable is less than another variable or constant.
GOTO STATE Negate Current, IF temp < 0

#28 RESCAN TRANSITIONS IF EQUAL:
RESCAN TRANSITIONS IF var = var | const

Rescans transitions if a variable is equal to another variable or constant
RESCAN TRANSITIONS IF temp = 0

#29 IS EQUAL:
GOTO STATE State #n, IF var = var | const

Transfers to another state if a variable is equal to another variable or constant
GOTO STATE Read Position Reference, IF Homed = Number1

#30 RESCAN TRANSITIONS IF GREATER:
RESCAN TRANSITIONS IF var > var | const

Rescans transitions if a variable is greater than another variable or constant
RESCAN TRANSITIONS IF temp > 0

#31 IS GREATER:
GOTO STATE State #n IF var > var | const

Transfers to another state if a variable is greater than another variable or constant
GOTO STATE Found Seat, IF temp > DAC Seat Current

#32 RESCAN TRANSITIONS IF DRIVE IS
RUNNING: Drive #n

Rescans the transitions of a state if the drive is running
RESCAN TRANSITIONS IF DRIVE #1 IS RUNNING

#33 IF DRIVE IS RUNNING: State #n, drive #n Transfers to another state if the drive is running
GOTO STATE Read Pos Command NEXT, IF DRIVE #1 IS RUNNING

#34 RESCAN TRANSITIONS IF DRIVE IS
STOPPED: State #n, drive #n

Rescans the transitions of a state if the drive is stopped
RESCAN TRANSITIONS IF DRIVE #1 IS STOPPED

#35 IF DRIVE IS STOPPED: State #n, drive #n Transfers to another state if the drive is stopped
GOTO STATE Fault Handler NEXT, IF DRIVE #1 IS STOPPED

#36 RESCAN TRANSITIONS IF DRIVE IS
REFERENCED: Drive #n

Rescans transitions of a state if the drive is referenced
RESCAN TRANSITIONS IF DRIVE #1 IS REFERENCED

#37 IF DRIVE IS REFERENCED: State #n, drive
#n

Transfers to another state if the drive is referenced
GOTO Follow On NEXT, IF DRIVE #1 IS REFERENCED

#38 RESCAN TRANSITIONS IF DRIVE IS NOT
REFERENCED: Drive #n

Rescans transitions of a state if the drive is not referenced
RESCAN TRANSITIONS IF DRIVE #1 IS NOT REFERENCED

#39 IF DRIVE IS NOT REFERENCED Transfers to another state if the drive is referenced
GOTO Follow Off NEXT, IF DRIVE #1 IS NOT REFERENCED

#40 CARRIAGE RETURN INPUT FROM
KEYBOARD:
GOTO STATE State #n NEXT, IF A CARIAGE
RETURN IS DETECTED

Transfers to another state if a carriage return is typed into the terminal keyboard
GOTO STATE Initiate Valve Seat NEXT, IF A CARIAGE RETURN IS DETECTED

#41 CHARACTER INPUT FROM KEYBOARD:
GOTO STATE State #n, IF char IS INPUT
FROM THE KEYBOARD

Transfers to another state if a specified character is entered from the terminal keyboard
GOTO STATE Initiate Valve Seat, IF s IS INPUT FROM THE KEYBOARD

#42 VALID NUMBER INPUT FROM KEYBOARD:
GOTO STATE State #n, IF A VALID NUMBER
IS INPUT FROM THE KEYBOARD

Transfers to another state if any valid number is entered from the terminal keyboard
GOTO STATE Stop Program, IF A VALID NUMBER IS INPUT FROM THE KEYBOARD

#43 SOMETHING INPUT FROM KEYBOARD:
GOTO STATE State #n NEXT IF SOMETHING
HAS BEEN ENTERED FROM THE
KEYBOARD

Transfers to another state if anything has been entered from the terminal keyboard
GOTO STATE Stop Program NEXT IF SOMETHING HAS BEEN ENTERED FROM
THE KEYBOARD

#44 RESCAN TRANSITIONS IF FORWARD LIMIT
HIT:
Drive #n

Rescans the state’s transitions if the drive’s forward limit has been reached
RESCAN TRANSITIONS IF Drive #1’s FORWARD LIMIT WAS REACHED

#45 IF FORWARD LIMIT HIT:
GOTO STATE State #n NEXT, IF Drive #1’s
FORWARD LIMIT WAS REACHED

Transfers to another state if the drive’s forward limit has been reached
GOTO STATE End Travel NEXT, IF Drive #1’s FORWARD LIMIT WAS REACHED

VC1000 Programming Manual

17

Appendix D—Table of System
Variables

The following is a table of the system variables. Most
of them can be both read and written to, but a few of

them are read only and cannot be changed by
assigning a value in the application programming. The
read only variables are #2 (actual pos.(#1)), #23
(actual vel.(#1)), #37 (Analog Position Input), #38
(Auxiliary Analog Input), and #46 (Drive Current
Command).

Index Variable Name Units Range of
Values

Description

#1 requested pos.(#1) Resolver counts –2147483647
to 2147483647

Target position for the motor in Position mode. This value can be changed
“on the fly” and the motor adjusts instantly.

#2 actual pos.(#1) Resolver counts –2147483647
to 2147483647

Current position of the motor. Note that you cannot change this variable.

#3 prop. gain(#1) (Counts x
Gain)/Scale

0 to 32767 The gain of the error signal applied to the output.

#4 int. gain(#1) (Counts x
Gain)/Scale

0 to 32767 The gain of the integral of the error signal applied to the output.

#5 deriv. gain(#1) (Counts x
Gain)/Scale

0 to 32767 The gain of the differential of the error signal applied to the output.

#6 feed fwd gain(#1) - - - Not Available
#7 requested vel.(#1) Counts/msec –32767 to

32767
Target velocity for the motor in Velocity mode. Unlike Position mode, this
variable is NOT reset when the motor is enabled.

#8 requested cur.(#1) Max. current/65535 –65535 to
65535

Target current for the motor in Current mode.

#9 acceleration(#1) Counts/msec 0 to maximum
vel.

(variable #11)

The maximum acceleration rate allowed. Lowering this value prevents the
motor from drawing too much current during acceleration. The drive
assumes the motor is capable of accelerating at this rate and generates its
motion profiles accordingly. If the motor’s actual acceleration lags too far
behind this value, it causes following errors in Velocity and Position modes.

#10 deceleration(#1) Counts/msec 0 to maximum
vel.

(variable #11)

The complement of Acceleration (Variable #9). A high rate can cause the
motor to generate too much current during deceleration.

#11 maximum vel.(#1) Counts/msec 0 to 32767 Maximum velocity. This variable can be used to prevent the motor from
spinning too fast. Again, the drive assumes the motor can attain this velocity
and generates following errors if the motor is not keeping up.

#12 maximum cur.(#1) Percent of Rating
37767 = 100%

0 to 65535 Maximum current delivered by the amplifier in Amps. This variable allows
you to limit the maximum output from the drive. When using a new motor for
the first time, the maximum current should be set very low until the system
is performing well. This prevents damage from overloading the coils and
runaway motors.

#13 ace scale(#1) 0 to 32767 The length of the discrete filter unused to generate ideal positions. The
larger this number, the slower the motor’s acceleration and deceleration.

#14 max. stop vel.(#1) Counts/msec 0 to 32767 Maximum velocity that the motor can be moving at and still be considered
“stopped.”

#15 error band(#1) Counts 0 to 32767 The range in which the motor is still considered in position.
#16 max. error(#1) Counts –2147483647

to 2147483647
The maximum difference allowed between the actual and ideal position of
the motor. If this limit is exceeded, the motor is disabled. Once the motor is
tuned, you should be able to choose a fairly low value for this variable. If this
causes errors (the motor is disabled during moves) the acceleration,
deceleration, or maximum velocity may be set higher than the motor can
achieve.

#17 pos. dead
band(#1)

Counts –2147483647
to 2147483647

The converse of Maximum Error (Variable #16). If the difference between
the actual and ideal position is less than half of the position of the dead
band, the amplifier output is set to zero. This is useful since some motors
cannot be tuned for acceptable performance without oscillating in position.

#18 vel. dead band(#1) 0 to 32767 The converse of Maximum Error (Variable #16). If the difference between
the actual and ideal velocity is less than half of the position of the dead
band, the amplifier output is set to zero. This is useful since some motors
cannot be tuned for acceptable performance without oscillating in position.

#19 in pos. delay(#1) msec 0 to 32767 How many loop cycles the drive has to be below the maximum stop velocity
and within the position band to be considered in position.

#20 skip counter(#1) - - - - - - Not Available
#21 current offset(#1) D/A counts 0 to 32767 The offset added to any nonzero current command.
#22 integral limit(#1) 0 to 32767 Low pass filter. See Appendix E.
#23 actual velocity(#1) (Counts x

Gain)/Scale
0 to 32767 Current velocity of the motor. Like Actual Position, you cannot change this

variable.

VC1000 Programming Manual

18

Index Variable Name Units Range of
Values

Description

#24 gain scale(#1) Value/(2^GainScale) 0 to 32767
(usually 0 to2)

Value used to scale all four PID gain factors (proportional, integral,
derivative, and feed forward). This variable is useful if the values needed to
tune the PID loop are excessively large or small. The formula is Actual/Gain
= 2^GainScale.

#25 forward limit(#1) Counts –2147483647
to 2147483647

The furthest position the motor can travel in the forward direction. Useful for
limited-travel systems, such as linear motors. Note that travel limits are
disabled by default.

#26 reverse limit(#1) Counts –2147483647
to 2147483647

The furthest position the motor can travel in the reverse direction. Note that
travel limits are disabled by default.

#27 follower pos.(#1) Counts –2147483647
to 2147483647

Position of the external encoder.

#28 follower mult.(#1) None 0 to 32767 The ratio of the Follower Multiplier divided by the Follower Divisor times the
external position equals the motor reference position.

#29 follower div.(#1) None 0 to 32767 The ratio of the Follower Multiplier divided by the Follower Divisor times the
external position equals the motor reference position.

#30 drive mode(#1) None The drive mode word consists of 16 bits, where the lowest five bits contain
the mode.
Hex 1 Current Mode
Hex 2 Velocity Mode
Hex 3 Position Mode
Other modes are possible, but not implemented on the VC1000. Hex 40
clears the following error, but we recommend that you do not attempt to use
this without additional instructions from Fisher Controls. Hex 80 adds friction
compensation in the PID loop. Hex 100 forces the drive into Reference
mode. Hex 200 enables the forward limit and Hex 400 enables the reverse
limit. If the 8000 bit is set to 0, the drive is disabled. Additional bits are
reserved.

#31 drive status(#1) None The status word returns the drive status to the user. Certain bits that are set
or cleared give the user information. When the drive reaches the forward
limit, it indicates the Hex 1 bit and when it reaches the reverse limit, it
indicates the Hex 2 bit. There are also limit switches. When the system
reaches the forward limit switch, it indicates Hex 4 and when it reaches the
reverse limit switch, it indicates Hex 8. The forward and reverse limit
switches are only active on a DSP card. When there is a drive fault, the Hex
80 bit is set. When there is a drive preference set, Hex 100 is set. Hex 200
is the drive acknowledge bit. When the drive is in position, it will indicate
Hex 800 and when the drive is running it indicates Hex 1000. When the
drive is enabled it indicates Hex 8000. When the user sends an invalid drive
mode in addition to the fault bit, you receive a Hex 40 bit. When there is a
drive error overload, you will also receive a Hex 20 bit and when there is a
following error, you will receive a Hex 10 bit.

#32 position error(#1)
#33 ref. position(#1) Encoder Counts –2147483647

to 2147483647
The position offset the system uses when a reference is established. The
default value is 0.

#34 reset position(#1) Encoder Counts –2147483647
to 2147483647

The drive is offset by this value and then the system is reset.

#35 system time HH:MM:SS System time in hours, minutes, and seconds.
#36 0 none 0 A constant with the value zero
#37 Analog Position

Input
0 to 3896 Reserved for custom use and expansion.

#38 Auxiliary Analog
Input

–2047 to 2047 Reserved for custom use and expansion.

#39 Analog Monitor 1 –2047 to 2047 Reserved for custom use and expansion.
#40 Analog Monitor 2 –2047 to 2047 Reserved for custom use and expansion.
#41 Reserved System

Variable 5
Reserved for custom use and expansion.

#42 Reserved System
Variable 6

Reserved for custom use and expansion.

#43 Reserved System
Variable 7

Reserved for custom use and expansion.

#44 Reserved System
Variable 8

Reserved for custom use and expansion.

#45 Reserved System
Variable 9

Reserved for custom use and expansion.

#46 Drive Current
Command

VC1000 Programming Manual

19

Appendix E—Useful Formulas for
the Design VC1000
Following are useful formulas which can be used to
calculate essential system and user variables.

Derivative Gain
The derivative gain is a drive tuning parameter and the
VC1000 is shipped with the derivative gain preset. If
the desired frequency response is known and the
system inertia can be determined, the required
derivative gain can be estimated by:

������������� ���	
�� ��������
	
������
���

Where :

Bandwidth = Desired maximum frequency response.
Usually between 1 and 20 Hz.

Torque Const = The torque constant of the actuator
motor. This varies with the actuator construction, so
contact the Fisher factory for this value.

The range of values for the derivative gain is 0 to
32767. Increasing this number increases the drive
stability. In some cases, using this value will result in
the drive making the actuator noisy, increasing wear. If
this is the case, the derivative gain will have to be
determined by trial and error.

Proportional Gain
The VC1000 is shipped with the proportional gain
preset. If the derivative gain is known, the required
proportional gain can be estimated by:

��
�
��
�������� �� ���������������������
����

Where :

Bandwidth = Desired maximum frequency response.
Usually between 1 and 20 Hz. Usually the same as the
frequency response for the derivative gain.

Derivative Gain = The derivative gain calculated
above.

The range of values for the proportional gain is 0 to
32767. Increasing this number increases the drive
response. In some cases, using this value will result in
the drive being too responsive or too sluggish, both of
which are undesirable. Being too responsive will make
the actuator noisy and increases wear. The actuator

may become unstable and even out of control. Being
too sluggish may result in the actuator not following
the position command well, resulting in poor process
control. If either of these is the case, the proportional
gain will have to be determined by trial and error.

Integral Gain
The VC1000 is shipped with the integral gain preset. If
the proportional gain is known, the required integral
gain can be estimated by:

�������������
�� ��������� ��
�
��
�������

����

Where :

Bandwidth = Desired maximum frequency response.
Usually between 1 and 20 Hz. Usually the same as the
frequency response for the derivative gain.

ProportionalGain = The proportional gain calculated
above.

The range of values for the integral gain is 0 to 32767.
Increasing this number increases the drive response.
In some cases, using this value will result in the drive
being too responsive or too sluggish, both of which are
undesirable. Being too responsive will make the
actuator noisy, increases wear and cause the actuator
to overshoot the commanded position. The actuator
may become unstable and even out of control. Being
too sluggish may result in the actuator not following
the position command well, resulting in poor process
control. If either of these is the case, the derivative
gain will have to be determined by trial and error.

Low Pass Filter
The VC1000 has a low pass filter which is useful in
electrically noisy environments to quiet the actuator. It
is used to filter out high frequency, electrical noise,
while allowing the lower frequency position command
signals to pass through. The value for the filter can be
determined by:

�
������������� ��� ���

Where :

BW = Desired frequency response of the low pass
filter, in Hz. Usually at least twice the desired
frequency response of the actuator.

The range of values for the low pass filter is 0 to
32767. A value of zero turns the filter off. Increasing
this number decreases the drive response. In some
cases, using this value will result in the drive being too

VC1000 Programming Manual

20

sluggish, resulting in the actuator not following the
position command well.

Current
The following formula is used to set the current to the
servo drive. The calculated current can be assigned to
system variables #8 (requested cur.(#1)) and #12
(maximum cur.(#1)) to control the output current. The
output units are in counts and can range from –65536
to +65536, which represents ±200%.

��������
��������	
����� �����

���

Where :

PercentTorque = Desired torque as a percent of
maximum (ex. Foldback Torque=30)

Velocity
The following formula is used to set the velocity of the
actuator. The formula is used to determine the motor
speed with the stroking speed determined by the roller
screw lead. The calculated result can be assigned to
system variables #7 (requested vel.(#1)) and #14
(max. stop vel.(#1)) to control the motor speed. The
units are counts per period, with the period being
defined by the drive firmware.

���
���� �� � �
������������� �

�����

Where:

RPM = Desired motor speed in revolutions per minute

CountsPerRev = Resolver counts per one revolution of
the motor. The R/D converter is 12 bits, so this number
is 4096.

The period for this drive is 1 millisecond. The number
60000 in the divisor converts the RPM to revolutions
per msec. Multipliying by the CountsPerRev converts

this into resolver counts per msec. The number 64 is a
scaling factor to improve resolution and reduce
truncation errors.

The CountsPerRev number could be hard-coded into
the software, but it is set as a variable and initialized in
the software to improve understandability.

Position Counts
The following formula is used to set the desired valve
position. The calculated results can be assigned to
system variable #1 (requested pos.(#1)). The resulting
number is the number of resolver counts away from
the reference position, which could be the valve seat
or other reference point. The units are in counts and
can either positive or negative. If the actuator
extended to find the seat or reference point, all the
position counts will be negative numbers. If the
actuator retracted to find the seat or reference point,
all the position counts will be positive numbers.
Remember, the counts represent absolute position
and are not relative to the prior position. A number
such as 250 or –250 will be near the seat and a
number such as 2000 or –2000 will be farther away
from the seat.

�
���
�����
��
!!����
����� "��
#���
����

�����

Where:

Command = Desired position command in microAmps.

StrokeCounts = The number of resolver counts for the
full valve stroke.

This equation assumes the command signal is a 4 to
20mA signal. The number 4000 removes the current
offset and the number 16000 represents the maximum
possible range of the signal. If the actual signal
exceeds 20 mA, the PosCounts will be greater than
StrokeCounts and the valve will over-travel. If this is a
problem, some means to prevent this must be written
into the user software routine.

VC1000 Programming Manual

21

Figure 3. State Diagram for Example Program

E0510 / IL

Appendix F—Example Program

The following is an example of a drive program.
Included is a state diagram (figure 3) to show the
program flow, and a description of the function of each
program state. The program’s function is to control a
valve where the valve plug is pushed down to close
the valve, which means the actuator extends to close
the valve.

The program consists of 19 states. States 1, 2, and 3
are used in initialize variables and constants the
program uses. States 6 through 10 are used to
calibrate the system as part of a startup sequence.

The states are executed only once, every time the
drive is powered up.

States 11 and 12 are the principle states, and the
program spends most of its time in either of these
states. State 11 is where the 4–20 mA analog input
command is read and scaled. Checks are made to be
sure the valve command is within the correct range
and the drive has not faulted. State 12 is where the
drive commands the actuator to go to the set point,
and checks are made to determine if the valve has
been commanded to close.

If the valve has been commanded to close, the drive
positions the valve plug until it is near the seat, and
then it switches to a constant force mode to actually

VC1000 Programming Manual

22

close the valve. This is done to be sure the valve
closes properly. Due to thermal expansion effects, the
valve may have physically changed size since the
actuator was calibrated during power up. If the drive
was run in a positioning mode all the way to the seat,
the valve plug may end up a few thousandths of an
inch off the seat, increasing the valve leak rate and
decreasing the valve seat life. Or, if the actuator was
trying to position the valve plug past the seat line, the
valve or actuator could potentially be damaged. States
13 through 18 handle the seat closure requirements.

State 1—Init0

Actions
This state has the program identification information
(lines 1 through 5). It also defines and initializes many
of the primary user variables such as stroke length
(–1125 for 1.125 inches), stroke polarity (the minus
sign on the stroke length indicates the actuator
extends to close the valve), torque limits, velocity limits
and a few other parameters.

Line 7 The resolver to digital converter is a 12–bit
device, so there are 4096 resolver “counts” in one
revolution of the resolver.

Line 8 The pitch of the actuator lead screw is 0.20
inches, so it takes five revolutions of the motor to
move the output shaft one inch.

Lines 9, 10, and 11 The peak, seat, and foldback
torque limits are set to 100%, 50%, and 30%
respectively. When the valve seats, it does so at 50%
of the full drive output current. It will hold that current
level until the foldback time runs out, after which the
output torque will drop to the foldback current of 30%
of the full output current.

Line 12 The foldback delay time is 250 milliseconds.

Lines 13 and 14 The maximum motor speed is 3000
rpm. During the calibration, or “homing” process, the
maximum speed is 100 rpm.

Lines 15 through 18 These are valve input
commands, expressed in microamperes. The
maximum open position is 20000, or 20 mA. If the
input goes below 2500 (2.50 mA) the drive assumes
the input signal has been lost (due to a bad connection
or broken wire) and will drive the actuator to the lost
command position, which in this case is 4000, or 4.00
mA. If the input command goes below 4200, or 4.20
mA, the valve will close. With 1.125 travel, the valve is
only open by 0.014 inch when the input command is
4.20 mA.

Lines 19 and 20 These are calibration values that are
unique to the drive, actuator, and valve combination,
and must be determined experimentally. When all the
pieces are mounted and mechanical and electrical
connections have been made, use an instrument
calibrator to apply a 4.000 mA signal to the command
input on the servo drive input connector. From the PC
type va #37 <enter>. The system will respond by
displaying a hexadecimal and decimal number. The
variable #37 is the analog position input, and what is
displayed is the reading of the analog to digital
converter connected to that input. The number may
look like 0xfffff718 (–2280). 0xfffff718 is
the 2’s compliment hex representation of the negative
number –2280. Therefore, the ADC count when the
valve is closed is –2280. Now the calibrator is used to
apply an input command of 20.000 mA. From the PC
type va #37 <enter>. In our case the result was
0x00000454 (1108), so when the valve is fully
open, the ADC count is 1108. The numbers –2280 and
1108 must be entered on these two lines, or the valve
will not stroke properly.

Transitions
There is only one transition, and that is to state Init1.

State 2—Init1

Actions
All of the position moves are based on the number of
resolver counts away from the seat. Internally, the
servo drive accumulates the resolver counts, adding
when moving in one direction, and subtracting when
going the other. In the State Init0, we defined the
number of resolver counts at 4096 per revolution, and
that 5 revolutions were required to move one inch.
Therefore, if we want to stroke exactly one inch, we
will have to count out 20,480 counts from the resolver
and then stop. In state 10, we will establish a zero
reference point from which all moves will be made.

Lines 1 through 3 Calculation to determine the
number of resolver counts to move from fully closed to
fully open. In our case, 23,040 counts.

Line 4 Calculation of the full stroke range of the
analog to digital converter on the 4 to 20 mA command
input. In our case, 1108 – (–2280) = 3,380 counts.

Lines 5 through 10 Calculation of the operating,
seating, and foldback currents. The calculation
converts the percentage value into a binary number
useable by the servo drive. The order of the operations
is important here because of the integer math.

Lines 11 through 17 Calculation of the motor speeds,
converting the speed from RPM to resolver counts per
millisecond, which is what the drive actually uses.

VC1000 Programming Manual

23

Lines 18 through 23 Calculations to convert and
scale the input position command into resolver counts.
The drive always positions the valve on the basis of
the number of resolver counts away from a zero
reference point. However, the input command is based
on a 4 to 20 mA signal. The first step in the conversion
is to subtract 4000 from the command, which removes
the 4.0 mA offset. The result is divided by 16000 to get
the percentage of the command between 4 and 20
mA. The result is multiplied by the number of resolver
counts to make a full stroke. The end result is the
number of resolver counts from the zero reference
point. Note that the actual order of the calculations is
different than given here, because of the integer math
and the need to preserve accuracy as much as
possible.

Transitions
There is only one transition, and that is to state Init2.

State 3—Init2

Actions
We continue to establish variables and constants the
drive application program will use.

Lines 1 through 3 Initializing some software flags.

Lines 4 and 5 Setting up some parameters that will be
used while “homing” the valve.

Lines 6 through 12 Converting and scaling position
commands, as was done in the state Init1.

Transitions
There is only one transition, and that is to state
Disable.

State 4—Disable

Actions
This state disables the drive and clears the lost
command software flag. The drive will not move the
valve plug as long as the drive is disabled.

Transitions
The transitions of this state will be rescanned every
millisecond, until the 24 VDC is applied to input
number 2 (DI2) on the input connector. When this

state is exited, the program will continue its execution
at state Enable.

State 5—Enable

Actions
This state enables the drive, allowing the drive to
position the valve plug.

Transitions
If the valve has been “homed” previously, the program
execution will jump to state Read Position Reference
and begin positioning the valve plug. If the Homing or
calibration procedure has not been performed, the
drive will begin that procedure next by going to the
state Initiate Valve Seat.

State 6—Initiate Valve Seat

Actions
This is the start of the homing, or calibration,
procedure to locate the seat and determine the “zero”
reference point. The basic method is to put the drive
into constant velocity mode and drive the valve plug
into the seat while monitoring the current to the
actuator motor. When the plug hits the seat, the
current will rise rapidly. When a certain threshold is
crossed, it is assumed the plug is on the seat and the
calibration will occur.

This state initializes the variables used in the
procedure.

Line 1 Sets the maximum current to the previously
determined current for this calibration procedure. (See
states Init0 and Init1.)

Line 2 Sets the maximum velocity of the actuator
during this procedure. (See states Init0 and Init1.)

In this example program, the velocity is set to 1/3
inches per second.

Line 3 Initializes the variable Filtered seat current,
which is used to locate the valve seat

Line 4 Puts the drive into velocity mode.

Transitions
There is only one transition, and that is to state Check
seat current sign.

VC1000 Programming Manual

24

State 7—Check seat current sign

Actions
This is the start of the seat detection program loop.

Line 1 Sets the variable temp to be the actual current
to the actuator motor.

Transitions
The first check is to see if the 24 VDC signal is applied
to input number 2 (DI2) on the input connector. If it is
not, the drive goes to the state Disable, and the drive
is disabled without finishing the homing procedure.

When the current is compared, we assume the current
is positive. If it is not positive, the program execution is
diverted to the state Negate current.

If neither of the first two checks changes the program
flow, then the program will continue its execution at
state Find Valve Seat

State 8—Negate current

Actions
If the actual current to the actuator is negative, the
value of the variable temp is negated to make it a
positive number.

Transitions
There is only one transition for this state, and that is to
state Find Valve Seat.

State 9—Find Valve Seat

Actions
The actions of this state causes the variable
Filtered Seat Current to rise very rapidly when
the valve plug contacts the seat. The object of this to
make the process sensitive to finding the seat.

Transitions
If the variable temp is less than or equal to the
variable DAC Seat Current, then the seat has not
been found, so the program flow loops back to the
state Check seat current sign, again. Otherwise, the
seat has been located and program execution goes to
the state Found Seat.

State 10—Found Seat

Actions
The valve plug is on the seat and the servo drive will
be reset.

Line 1 The actuator sits motionless for 200
milliseconds. This settling time helps make the
calibration more accurate.

Line 2 Sets the system variable reset position
equal to the actual valve position. This effectively
“resets” the drive and now all future moves will be
made relative to this “zero” point.

Line 3 Sets the “Homed” flag, indicating the drive is
calibrated.

Lines 4 and 5 Resets the velocity and current to the
operating velocity and current for normal operation.

Line 6 Puts the servo drive into position following
mode. The drive will now follow the command input
and position the valve plug relative to the zero
position, and proportional to the 4 to 20 mA command
signal.

Transitions
There is only one transition, and that is to the state
Read Position Reference.

State 11—Read Position Reference

Actions
This state reads and scales the 4 to 20 mA command
signal. It also puts the actuator current signal on the
analog monitor.

Lines 1 through 3 Reads and scales the 4 to 20 mA
signal and converts it to the number of resolver counts
away from the seated position.

Line 4 Scales and puts the actual current to the
actuator motor on the analog output, Analog Monitor 1.

Transitions
There are five transitions.

1. If the drive has detected a fault, the program
execution continues with the state Fault Detected.

2. If the 24 VDC signal is not applied to input number
2 (DI2) on the input connector, the drive goes to the
state Disable, and the drive is disabled.

3. If the Lost Command Flag has been set, the
input command signal has been lost and the program
execution will continue with state Loss of Command.

VC1000 Programming Manual

25

4. If the input command signal is less than the loss of
signal threshold (2.50mA in this example program) the
program execution will continue with the state Loss of
Command.

5. If none of the above are true, then the signal is
within the correct range and there are no faults, so the
program execution will continue with the state Set
Position Request next.

State 12—Set Position Request

Actions

When the drive is in position mode, the drive attempts
to position the valve plug to the position set in the
variable requested position.

Line 1 Sets the commanded position into the variable
requested position.

Transitions

There are three possible transitions.

1. If the requested position is less than the valve
minimum open position, then the program executions
continues with state Check Position to begin the
process of closing the valve. (The valve positions are
negative because the actuator is retracting to open the
valve. Therefore, if pos counts is greater than MIN
POS CNTS, the commanded position is between the
seat and the minimum open position. The valve is to
be closed by the actuator.)

2. If the requested position will open the valve and it
has been closed (the Current mode flag has been
set) then the then drive must be returned to the
position mode. Program execution continues with the
state Position Mode.

3. If the last position was with the valve open, and the
valve is still to be open (that is to say the valve has not
been commanded to close), the program execution
continues with state Read Position Reference next, to
read the position command input again.

Notice that when the drive is positioning the valve
and everything is normal (no faults) the program
will spend virtually all its time in states 11 and 12.

State 13—Loss of Command

Actions

The input command signal has been lost.

Line 1 Set the variable pos counts to the previously
determined failure position. In this example program,
the valve is to close. (See Line 15 of the state Init0.)

Line 2 Sets the Loss of Command flag.

Transitions
There is only one transition, and that is to the state Set
Position Request, which will cause the valve to close.

State 14—Check Position

Actions
This state has no define actions. Its sole purpose is to
direct program execution.

Transitions
There are three possible transitions. The program flow
only came to this state because the valve has been
commanded to close.

1. If the actual valve position is closer to the seat than
the minimum open position, then the valve is to be
closed in the constant current, or constant force,
mode. Program execution continues with state Close
Valve.

2. If for some reason, the valve has been commanded
to close and it is still off the seat, but it was previously
on the seat (the Current mode flag has been set)
the drive must be put back into the position mode.
Program execution continues with the state Set
Position Mode.

3. If the actual valve position is further away from the
seat than the minimum open position, then the valve is
still being controlled in positioning mode. Program
execution continues with the state Read Position
Reference.

State 15—Close Valve

Actions
The only way to get to this state is because the valve
has been commanded to close, the valve plug actual
position is closer to the seat than the minimum open
position, and the drive is still in position mode. This
state initializes some variables specific to closing the
valve and puts the drive into current mode.

Lines 1 and 2 Sets up the predetermined currents to
use.

Line 3 Sets the Current mode flag.

VC1000 Programming Manual

26

Line 4 Puts the drive into current mode to close the
valve.

Transitions

If the Foldback Flag has been set, program
execution continues with the state In Foldback.
Otherwise, program execution continues with the state
Not in Foldback.

State 16—Set Position Mode

Actions

The valve seating action is being terminated. Three
flags are cleared and the drive returned to position
mode.

Transitions

There is only one transition, and that is to state Read
Position Reference next.

State 17—Not in Foldback

Actions

The valve is seated using the full Seat Current to
overcome packing and seal friction, and be sure the
valve is properly seated. After we are sure the valve is
on the seat, the packing and seal friction will help keep
the plug on the seat and the current in the actuator can
be reduced to the Foldback Current.

Line 1 Increments the Foldback timer by one. The
drive’s loop time is one millisecond, so each count
represents one millisecond of the delay time before the
actuator current will be reduced to the Foldback
Current.

Line 2 Sets the current command to the Seat Current.

Transitions

If the foldback timer has exceeded the Foldback
delay time, the program flow continues with the
state In Foldback. If not, we must continue to check
the input command, so program flow continues with
state Read Position Reference next.

State 18—In Foldback

Actions
The valve plug is on the seat and for a long enough
time that the Foldback timer has expried and the
current to the actuator is to be reduced.

Line 1 Sets the Foldback Flag.

Line2 Reduces the commanded current to the
Foldback Current.

Transitions
There is only one transition, and that is to the state
Read Position Reference. We must continually monitor
the input command.

State 19—Fault Detected

Actions
A fault has been detected, so the drive is disabled.

Transitions
The transitions of this state will loop back to the
beginning of this state continuously until the 24 VDC
input signal to input 2 on the input connector is
removed. When that happens, the program execution
will continue with the state Disable.

List of States in Example Program
Index State

001*
002
003
004
005

Init0
Init1
Init2
Disable
Enable

006
007
008
009
010

Initiate Valve Seat
Check seat current sign
Negate current
Find Valve Seat
Found Seat

011
012
013
014
015

Read Position Reference
Set Position Request
Stroke
Loss of Command
Check Position

016
017
018
019
020

Close Valve
Set Position Mode
Not In Foldback
In Foldback
Fault Detected

VC1000 Programming Manual

27

Listing of Example Program
Index Actions of State: Init0

01*
02
03
04
05

PRINT: Fuel Valve Control Program \n
/* Written DJW 7–28–00
/* Last revised DJW 8–9–00
PRINT: Customer PN XXXXXX–XX Rev NEW \n
PRINT: Fisher PN XXXXXXXX012 Rev A \n

06
07
08
09
10

SET: Stroke = –1125
SET: Counts per Rev = 4096
SET: Revs per inch = 5
SET: Peak Torque = 100
SET: Seat Torque = 50

11
12
13
14
15

SET: Foldback Torque = 30
SET: Foldback delay time = 250
SET: Max Vel = 3000
SET: Home Vel = 100
SET: Lost Command Pos = 4000

16
17
18
19
20

SET: Input Signal Lost = 2500
SET: Max Open Pos = 20000
SET: Min Open Pos = 4200
SET: ADC CNT Zero stroke = –2280
SET: ADC CNT Full stroke = 1108

Index Transitions of State: Init0

01* GOTO STATE Init1 NEXT

Index Actions of State: Init1

01
02
03
04
05

MULTIPLY: Stroke Counts = Stroke * Counts per Rev
MULTIPLY: Stroke Counts = Stroke Counts * Revs per inch
DIVIDE: Stroke Counts = Stroke Counts / 1000
SUBTRACT: ADC range = ADC CNT Full stroke – ADC CNT Zero stroke
MULTIPLY: Operating Current = Peak Torque * 32768

06
07
08
09
10

DIVIDE: Operating Current = Operating Current / 100
MULTIPLY: Seat Current = Seat Torque * 32768
DIVIDE: Seat Current = Seat Current / 100
MULTIPLY: Foldback Current = Foldback Torque * 32768
DIVIDE: Foldback Current = Foldback Current / 100

11
12
13
14
15

MULTIPLY: temp = Max Vel * Counts per Rev
MULTIPLY: temp = temp * 64
DIVIDE: Max Vel Counts = temp / 60000
SET: maximum vel.(#1) = Max Vel Counts
MULTIPLY: temp = Home Vel * Counts per Rev

16
17
18
19
20

MULTIPLY: temp = temp * 64
DIVIDE: Home Vel Cnts = temp / 60000
SUBTRACT: temp = Min Open Pos – 4000
MULTIPLY: temp = temp * Stroke Counts
DIVIDE: MIN POS CNTS = temp / 16000

21
22
23

SUBTRACT: temp = Max Open Pos – 4000
MULTIPLY: temp = temp * Stroke Counts
DIVIDE: MAX POS CNTS = temp / 16000

Index Transitions of State: Init1

01 GOTO STATE Init2 NEXT

VC1000 Programming Manual

28

Listing of Example Program (continued)
Index Actions of State: Init2

01
02
03
04
05

SET: Homed = 0
SET: Number1 = 1
SET: Number2 = 2
SUBTRACT: DAC Seat Current = Seat Current – 100
SET: Seat Current Filter = 800

06
07
08
09
10

SUBTRACT: temp = Input Signal Lost – 4000
MULTIPLY: temp = temp * ADC range
DIVIDE: temp = temp / 16000
ADD: Signal Lost Count = temp + ADC CNT Zero stroke
SUBTRACT: temp = Lost Command Pos – 4000

11
12

MULTIPLY: temp = temp * Stroke Counts
DIVIDE: Lost Command Pos Counts = temp / 16000

Index Transitions of State: Init2

01 GOTO STATE Disable NEXT

Index Actions of State: Disable

01
02

DISABLE DRIVE : drive #1
SET: Lost Command Flag = 0

Index Transitions of State: Disable

01
02

GOTO STATE Enable NEXT, IF INPUT Number2 ON GROUP 0 IS LOW
RESCAN TRANSITIONS

Index Actions of State: Enable

01 ENABLE DRIVE : drive #1

Index Transitions of State: Enable

01
02

GOTO STATE Read Position Reference, IF Homed = Number1
GOTO STATE Initiate Valve Seat NEXT

Index Actions of State: Initiate Valve Seat

01
02
03
04

SET: maximum cur.(#1) = Seat Current
SET: requested vel.(#1) = Home Vel Cnts
SET: Filtered Seat Current = 0
VELOCITY MODE : drive #1

Index Transitions of State: Initiate Valve Seat

01 GOTO STATE Check seat current sign NEXT

Index Actions of State: Check Seat Current Sign

01 SET: temp = Drive Current Command

Index Transitions of State: Check Seat Current Sign

01
02
03

GOTO STATE Disable NEXT, IF INPUT Number2 ON GROUP 0 IS HIGH
GOTO STATE Negate current, IF temp < 0
GOTO STATE Find Valve Seat NEXT

Index Actions of State: Negate Current

01 NEGATE: temp = – temp

Index Transitions of State: Negate Current

01 GOTO STATE Find Valve Seat NEXT

Index Actions of State: Find Valve Seat

01
02
03
04
05

DIVIDE: temp2 = Filtered Seat Current / 32768
SUBTRACT: temp = temp – temp2
MULTIPLY: temp = Seat Current Filter * temp
ADD: Filtered Seat Current = Filtered Seat Current + temp
DIVIDE: temp = Filtered Seat Current / 32768

Index Transitions of State: Find Valve Seat

01
02

GOTO STATE Found Seat, IF temp > DAC Seat Current
GOTO STATE Check seat current sign NEXT

VC1000 Programming Manual

29

Listing of Example Program (continued)
Index Actions of State: Found Seat

01
02
03
04
05
06

WAIT: 200
SET: reset position(#1) = actual pos.(#1)
SET: Homed = Number1
SET: maximum vel.(#1) = Max Vel Counts
SET: maximum cur.(#1) = Operating Current
POSITION MODE : drive #1

Index Transitions of State: Found Seat

01 GOTO STATE Read Position Reference NEXT

Index Actions of State: Read Position Reference

01
02
03
04

SUBTRACT: temp = Analog Position Input – ADC CNT Zero stroke
MULTIPLY: temp = temp * Stroke Counts
DIVIDE: pos counts = temp / ADC range
DIVIDE: Analog Monitor 1 = Drive Current Command / 32

Index Transitions of State: Read Position Reference

01
02
03
04
05

GOTO STATE Fault Detected NEXT, IF DRIVE #1 HAS FAULTED
GOTO STATE Disable NEXT, IF INPUT Number2 ON GROUP 0 IS HIGH
GOTO STATE Loss of Command, IF Lost Command Flag = Number1
GOTO STATE Loss of Command, IF Analog Position Input < Signal Lost Count
GOTO STATE Set Position Request NEXT

Index Actions of State: Set Position Request

01 SET: requested pos.(#1) = pos counts

Index Transitions of State: Set Position Request

01
02
03

GOTO STATE Check Position, IF pos counts > MIN POS CNTS
GOTO STATE Set Position Mode, IF Current mode flag = Number1
GOTO STATE Read Position Reference NEXT

Index Actions of State: Loss of Command

01
02

SET: pos counts = Lost Command Pos Counts
SET: Lost Command Flag = Number1

Index Transitions of State: Loss of Command

01 GOTO STATE Set Position Request NEXT

Index Actions of State: Check Position

There are no Actions defined for state Check Position

Index Transitions of State: Check Position

01
02
03

GOTO STATE Close Valve, IF actual pos.(#1) > MIN POS CNTS
GOTO STATE Set Position Mode, IF Current mode flag = Number1
GOTO STATE Read Position Reference NEXT

Index Actions of State: Close Valve

01
02
03
04

SET: temp = Seat Current
SET: temp2 = Foldback Current
SET: Current mode flag = Number1
CURRENT MODE : drive #1

Index Transitions of State: Close Valve

01
02

GOTO STATE In Foldback, IF Foldback Flag = Number1
GOTO STATE Not In Foldback NEXT

Index Actions of State: Set Position Mode

01
02
03
04

SET: Foldback Flag = 0
SET: Foldback Timer = 0
SET: Current mode flag = 0
POSITION MODE : drive #1

Index Transitions of State: Set Position Mode

01 GOTO STATE Read Position Reference NEXT

VC1000 Programming Manual

30

Listing of Example Program (continued)
Index Actions of State: Not in Foldback

01
02

ADD: Foldback Timer = Foldback Timer + Number1
SET: requested cur.(#1) = temp

Index Transitions of State: Not in Foldback

01
02

GOTO STATE In Foldback, IF Foldback Timer > Foldback delay time
GOTO STATE Read Position Reference NEXT

Index Actions of State: In Foldback

01
02

SET: Foldback Flag = Number1
SET: requested cur.(#1) = temp2

Index Transitions of State: In Foldback

01 GOTO STATE Read Position Reference NEXT

Index Actions of State: Fault Detected

01 DISABLE DRIVE : drive #1

Index Transitions of State: Fault Detected

01
02

GOTO STATE Disable NEXT, IF INPUT 2 ON GROUP 0 IS HIGH
GOTO STATE Fault Detected NEXT

VC1000 Programming Manual

31

VC1000 Programming Manual

32

For information, contact Fisher Controls:
Marshalltown, Iowa 50158 USA
Cernay 68700 France
Sao Paulo 05424 Brazil
Singapore 128461

�����������	��
����	�������������������	������
�����
���������������	�	������������������������

������	����������������	��	������	����������	������������	�������		

��������������������������������	����	������	���	�����������������������	�������������������������	����������������������
�������������������	���	����	����
�������	��
�	���������	���������������������������

Printed in U.S.A.

�Fisher Controls International, Inc. 2000; All Rights Reserved

Fisher and Fisher-Rosemount are marks owned by Fisher Controls International, Inc. or Fisher-Rosemount Systems, Inc.
All other marks are the property of their respective owners.

