Местная панель управления Fisher™ LCP100

Содержание

<u>-</u>	
Введение	. 1
Назначение руководства	. 1
Описание	. 2
Технические характеристики	. 2
Услуги по обучению	. 2
Установка	
Классификация опасных зон и специальные	
инструкции по безопасной эксплуатации и	
установке в опасных зонах	. 5
Монтаж	
Электрические соединения	
Испытание перед настройкой	
Настройка	
Принцип действия	
Техническое обслуживание	26
Устранение неисправностей	
Заказ деталей	
Летапи	27

Рис. 1. Местная панель управления Fisher LCP100 с цифровым контроллером клапанов FIELDVUE DVC6200 SIS и приводом Bettis™

Введение

Назначение руководства

Данное руководство по эксплуатации содержит информацию по монтажу и техническому обслуживанию местной панели управления Fisher LCP100 (рис. 1). Это устройство используется с приборами Fisher FIELDVUE [™] в системах противоаварийной защиты (Safety Instrumented Systems – SIS). Дополнительную информацию см. в руководстве по цифровым контроллерам клапанов DVC6200 SIS для систем противоаварийной защиты (SIS) (D103557X012) или руководстве по цифровым контроллерам клапанов DVC6000 SIS для систем противоаварийной защиты (SIS) (D103230X012).

Информация в этом руководстве подходит к обоим цифровым контроллерам клапанов DVC6200 SIS и DVC6000 SIS, если не указано иное. Для простоты во всем руководстве будет использоваться название модели DVC6200 SIS.

Персонал, устанавливающий, эксплуатирующий или обслуживающий местную панель управления LCP100, должен пройти полное обучение и иметь опыт монтажа, эксплуатации и технического обслуживания клапанов, приводов

и сопутствующего оборудования. Во избежание получения травм или повреждения оборудования важно внимательно изучить, усвоить и соблюдать все указания, приведенные в настоящем руководстве, включая все указания и предостережения по технике безопасности. При возникновении любых вопросов по данным инструкциям обратитесь в торговое представительство компании Emerson.

Описание

Местная панель управления LCP100 используется с цифровым контроллером клапанов DVC6200 SIS, поддерживающим протокол связи HART®. Эта панель используется для ручного открывания и закрывания аварийного клапана. Панель LCP100 также предоставляет функцию ручного сброса и имеет кнопку для запуска испытания неполного хода.

Технические характеристики

Типовые технические характеристики местной панели управления LCP100 приведены в табл. 1.

Услуги по обучению

Для получения информации по доступным курсам обратиться по следующему адресу:

Компания Emerson Automation Solutions Россия, 115054, г. Москва, ул. Дубининская, 53, стр. 5 Тел.: +7 (495) 995-95-59 Факс: +7 (495) 424-88-50 Info.Ru@Emerson.com

emerson.com/fishervalvetraining

D103272X0RU

Май 2020 г.

Таблица 1. Технические характеристики

Варианты питания (выбирается переключателем)

■ Внешнее: 24 В постоянного тока +/- 10% при максимальном непрерывном токе 50 мА (максимальный пусковой бросок тока 100 мА) ■ Контур: 8 – 20 мА (для комбинации LCP100 и **DVC6200 SIS)**

Потребляемый ток

Внешний: макс. 1.32 Вт непрерыв. Контур (точка-точка): макс. 0,042 Вт непрерыв. Контур (многоточечное подключение): макс. 0,126 Вт непрерыв.

Диапазон допустимой температуры⁽¹⁾

от-40 до 65°C (от -40 до 149°F)

Максимальное расстояние между местной панелью управления LCP100 и цифровым контроллером клапанов DVC6200 SIS

Длина кабеля ограничена максимальным значением емкости кабеля 100 000 пФ(2). Обычно расстояние составляет 314 метров (1030 футов) с экранированным аудио-, управляющим и измерительным кабелем сортамента 18 AWG.

Классификация электрооборудования

CSA (C/US)

AEx ià IIB T4 Ga⁽³⁾ – зона 0, 1, 2 AEx e mb [ib] IIC T4 Gb – зона 1, 2 AEx ic IIC T4 Gc – зона 2 класс I раздел 2 группы ABCD T4

Ex ia IIB T4 Ga⁽³⁾ – зона 0. 1. 2 Ex e mb [ib] IIC T4 Gb – зона 1, 2 Ex ic IIC T4 Gc – зона 2

Ex ia IIB T4 Ga⁽³⁾ – зона 0, 1, 2 Ex e mb [ib] IIC T4 Gb – зона 1, 2 Ex ic IIC T4 Gc – зона 2 Ex tb IIIC T71°C Db – зона 21, 22

Другие классификации и сертификации

ТР ТС - Технический регламент Таможенного союза (Россия, Казахстан, Белоруссия и Армения)

ESMA— Emirates Authority for Standardization and Metrology - ECAS-Ex (UAE)

Корпус электрооборудования

IP66

Электромагнитные помехи (EMI)

Соответствует требованиям стандарта EN 61326-1:2013

Помехоустойчивость - промышленные зоны согласно табл. 2 стандарта EN 61326-1. Технические характеристики приведены в табл. 2 ниже.

Излучение - класс А

Класс оборудования ISM: группа 1, класс А

Соединения

Кабелепровод: 3/4 NPT или M20

Проводка

Сортамент от 14 до 26 AWG

Спецификации моментов затяжки

Клеммы: 0,5 Нм (4,5 дюймофунта)

Установка электрооборудования

Соединения проводов чувствительны к полярности.

Совместимость

DVC6200 SIS с микропрограммой версии 3 или более DVC6000 SIS с микропрограммой версии 7 или более

поздней

Ориентация при установке

Вход электропроводки должен быть обращен вниз

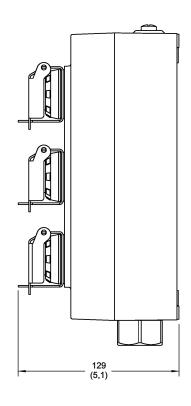
Габариты

Длина 253.1 мм (10 дюймов), ширина 109.5 мм (4,3 дюйма), глубина 127,8 мм (5 дюймов). См. рис. 2.

Материалы конструкции

Материал корпуса: наполненный полиэфирный пластик

Ориентировочный вес


2,2 кг (4,9 фунта)

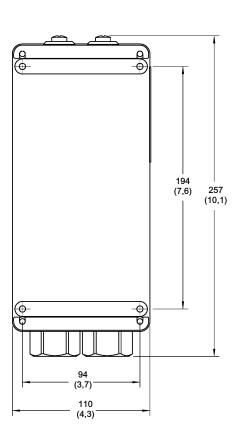

^{1.} Не допускается превышение предельных значений давления или температуры, а также нарушение ограничений применимых стандартов, указанных в данном руководстве. 2. DVC6000 SIS: Длина кабеля ограничена максимальным значением емкости кабеля 18 000 пФ. 3. Только питание от контура.

Таблица 2. Характеристики электромагнитной помехоустойчивости

Порт	Явление	Базовый стандарт	Контрольный уровень	Критерии эффективности ⁽¹⁾	
	Электростатический разряд (ESD)	IEC 61000-4-2	± 4 кВ при контакте ± 8 кВ по воздуху	А	
Корпус	Излучаемое электромагнитное поле	IEC 61000-4-3	80 – 1000 МГц при 10 В/м при 1 кГц АМ при 80% 1400 – 2000 МГц при 3 В/м при 1 кГц АМ при 80% 2000 – 2700 МГц при 1 В/м при 1 кГц АМ при 80%	А	
_	Всплеск (быстрые переходные процессы)	IEC 61000-4-4	± 1 кВ, линии ввода/вывода ± 2 кВ, линии электропередачи с постоянным током	А	
Сигнал ввода-вывода/ управление	Скачок напряжения	IEC 61000-4-5	± 1 кВ, линии ввода/вывода ± 2 кВ, линии электропередачи с постоянным током	А	
	Наведенная радиочастота	IEC 61000-4-6	От 150 кГц до 80 МГц при 3 В среднекв. при 1 кГц АМ при 80%	А	
Предел спецификаций = ±1% от интервала 1. А = без потери производительности во время испытаний. В = временная потеря производительности во время испытаний, но с самовосстановлением.					

Рис. 2. Размеры местной панели управления Fisher LCP100

мм (дюймы)

E1077-1

Май 2020 г.

Установка

▲ ПРЕДУПРЕЖДЕНИЕ

Опасность электростатического разряда. Не протирать и не очищать панель LCP100 с применением растворителей при наличии воспламеняемых паров. Это может привести к взрыву.

Примечание

Проложить всю проводку с левой стороны внутри отсека LPC100 вдали от кнопок.

Классификация опасных зон и специальные инструкции по безопасной эксплуатации и установке в опасных зонах

См. следующие дополнения к руководству по эксплуатации для получения информации об одобрениях.

- Сертификация для опасных зон по CSA местный пульт управления серии LCP100 (D104236X012)
- Сертификаты ATEX для опасных зон цифровые контроллеры клапанов серии DVC2000 (D104237X012)
- Сертификаты IECEх для опасных зон цифровые контроллеры клапанов серии DVC2000 (D104238X012)

Все документы можно получить в местном <u>торговом представительстве компании Emerson</u> или на веб-сайте Fisher.com. Для получения более конкретной информации по классификации и сертификации обратитесь в торговое представительство компании Emerson.

Монтаж

Информацию о размерах см. на рис. 2. Местная панель управления LCP100 имеет 4 (четыре) монтажных отверстия для установки устройства на месте эксплуатации. Панель LCP100 необходимо устанавливать таким образом, чтобы соединения проводки располагались в нижней части для предотвращения скопления влаги внутри корпуса.

Электрические соединения

▲ ПРЕДУПРЕЖДЕНИЕ

Выбрать проводку и/или кабельные уплотнители, которые рассчитаны для среды, в которой они будут использоваться (опасная зона, класс защиты от проникновения загрязнений и температура). Использование неправильно подобранной проводки и/или кабельных вводов может привести к травмам или повреждению оборудования вследствие возможного пожара или взрыва.

Подключение проводки должно соответствовать местным, региональным и государственным нормам и правилам сертификации любых опасных зон. Несоблюдение местных, региональных и государственных норм и правил может привести к травмам или повреждению оборудования вследствие возможного пожара или взрыва.

Следовать инструкциям в соответствующих схемах проводки, как указано в таблице 3, исходя из используемых методов защиты и требований к установке. Также см. рис. 4 для получения информации о настройках переключателя LCP100, подключениях клемм и данных на табличках, а также сведений о клеммной коробке DVC6200 SIS.

Таблица 3. Конфигурация проводки с цифровым контроллером клапанов DVC6200 SIS

Метод защиты LCP100	Источник питания LCP100	Порядок подключения проводов от логического устройства	Режим DVC6200 SIS (ток или напряжение)	См. рисунок
		DVC6200 CIC LCD400	Двухточечный	5
	КОНТУР	DVC6200 SIS, затем LCP100	Многоточечный	6
Ex e mb [ib] IIC	KOHTYP	L OD400 DV00000 010	Двухточечный	7
Ex tb IIIC		LCP100, затем DVC6200 SIS	Многоточечный	8
	04.5	D1/00000 010 1 0 D100	Двухточечный	9
	24 В пост. тока	DVC6200 SIS, затем LCP100	Многоточечный	10
		DVC6200 SIS, затем LCP100	Двухточечный	11
	КОНТУР		Многоточечный	12
Ex ic IIC		LOD400 DV00000 010	Двухточечный	13
Ex tb IIIC		LCP100, затем DVC6200 SIS	Многоточечный	14
		DV00000 010 L 0D400	Двухточечный	15
	24 В пост. тока	DVC6200 SIS, затем LCP100 -	Многоточечный	16
			Двухточечный	17
Ex ia IIB	I/OLITY/D	DVC6200 SIS, затем LCP100	Многоточечный	18
Ex tb IIIC	КОНТУР		Двухточечный	19
		LCP100, затем DVC6200 SIS	Многоточечный	20

Примечание

Для искробезопасных применений панель LCP100 формирует искробезопасную систему защиты от взрывов при использовании соответствующего подключаемого взрывобезопасного аппарата (барьера) или других искробезопасных устройств.

Должны соблюдаться следующие требования: Uo \leq Ui , Io \leq Ii, Po \leq Pi , Co \geq Ci + Cc, Lo \geq Li + Lc.

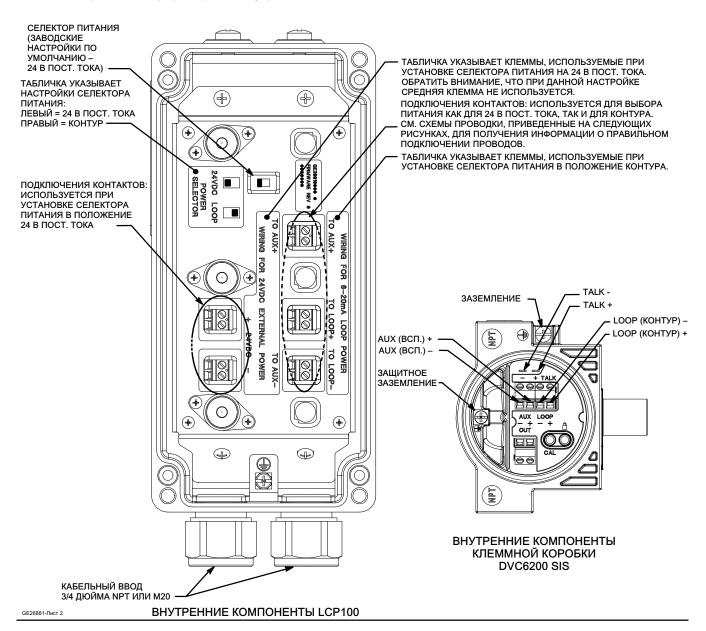

Устанавливать крышку, затягивая винты равномерно в перекрестной очередности, как указано на рис. 3, и прилагая момент 2,82 Нм (25 дюймофунтов), чтобы обеспечить правильную установку крышки.

Рис. 3. Правильная установка крышки

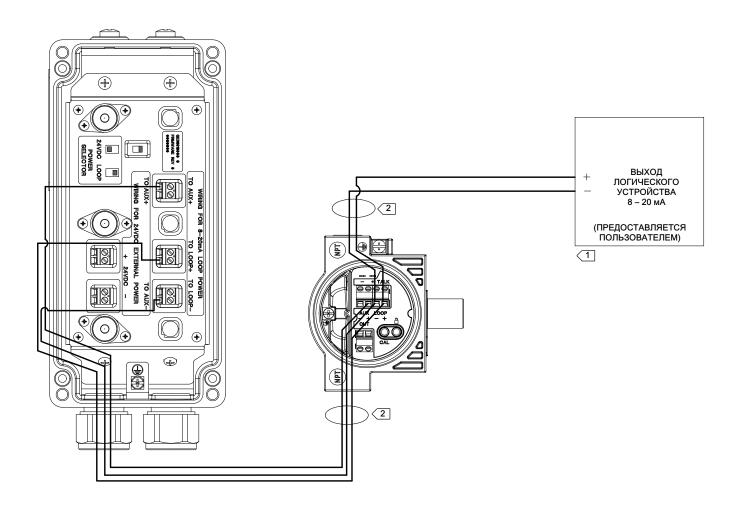
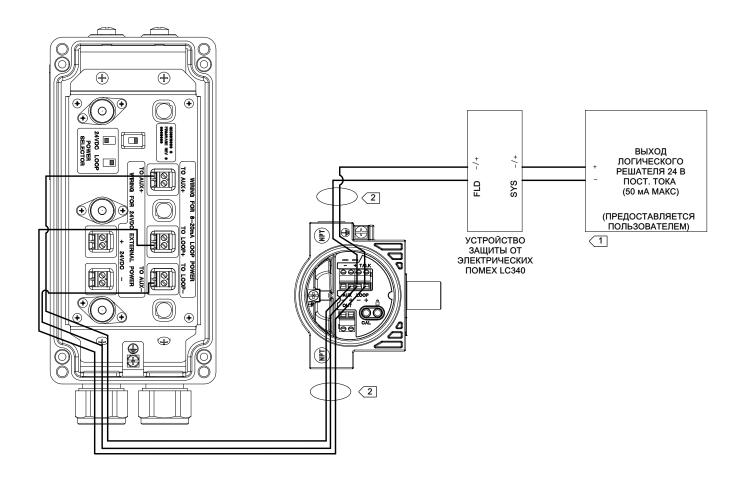

ПРИМЕЧАНИЕ. ЗАТЯГИВАТЬ ВИНТЫ В ПЕРЕКРЕСТНОЙ ОЧЕРЕДНОСТИ, ЧТОБЫ ОБЕСПЕЧИТЬ ПРАВИЛЬНУЮ УСТАНОВКУ КРЫШКИ

Рис. 4. Подробная информация по внутренним компонентам Fisher LCP100 и FIELDVUE DVC6200 SIS

Рис. 5. Ex e mb [ib] IIC или Ex tb IIIC Монтажная схема 1

Метод защиты LCP100	Источник питания LCP100	Порядок подключения проводов от логического устройства	Режим DVC6200 SIS (ток или напряжение)
Ex e mb [ib] IIC Ex tb IIIC	КОНТУР	DVC6200 SIS, затем LCP100	Двухточечный

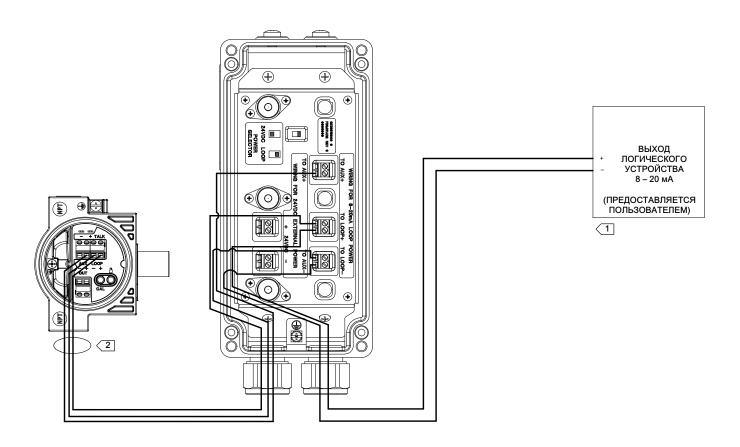

ПРИМЕЧАНИЯ

 $\fbox{1}$ МИНИМАЛЬНЫЙ ВЫХОДНОЙ СИГНАЛ ЛОГИЧЕСКОГО УСТРОЙСТВА ДОЛЖЕН СОСТАВЛЯТЬ НЕ МЕНЕЕ 8 мА. LCP100 ПРИ ПИТАНИИ ОТ КОНТУРА ПОТРЕБЛЯЕТ ПРИБЛИЗИТЕЛЬНО 4 мА.

2 ДЛЯ ОГНЕ-/ВЗРЫВОЗАЩИЩЕННЫХ ДОПУЩЕННЫХ ЦИФРОВЫХ КОНТРОЛЛЕРОВ КЛАПАНОВ УСТАНОВИТЬ КАБЕЛЬНУЮ ГЕРМЕТИЗАЦИЮ ИЛИ ОГНЕЗАЩИЩЕННЫЕ КАБЕЛЬНЫЕ САЛЬНИКИ, КАК ЭТО НЕОБХОДИМО ДЛЯ ПОДДЕРЖАНИЯ ОГНЕ-/ВЗРЫВОЗАЩИЩЕННОСТИ УСТРОЙСТВА.

Рис. 6. Ex e mb [ib] IIC или Ex tb IIIC Монтажная схема 2

Метод защиты LCP100	Источник питания LCP100	Порядок подключения проводов от логического устройства	Режим DVC6200 SIS (ток или напряжение)
Ex e mb [ib] IIC Ex tb IIIC	КОНТУР	DVC6200 SIS, затем LCP100	Многоточечный

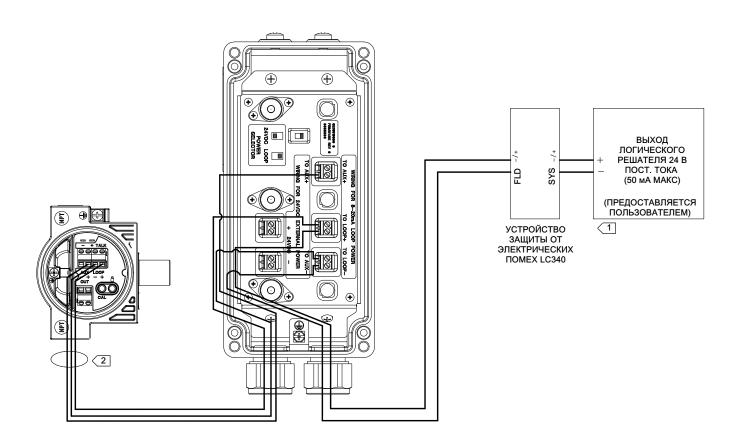

ПРИМЕЧАНИЯ

1 СР100 ПРИ ПИТАНИИ ОТ КОНТУРА ПОТРЕБЛЯЕТ ПРИБЛИЗИТЕЛЬНО 4 мА.

ДЛЯ ОГНЕ-/ВЗРЫВОЗАЩИЩЕННЫХ ДОПУЩЕННЫХ ЦИФРОВЫХ КОНТРОЛЛЕРОВ КЛАПАНОВ УСТАНОВИТЬ КАБЕЛЬНУЮ ГЕРМЕТИЗАЦИЮ ИЛИ ОГНЕЗАЩИЩЕННЫЕ КАБЕЛЬНЫЕ САЛЬНИКИ, КАК ЭТО НЕОБХОДИМО ДЛЯ ПОДДЕРЖАНИЯ ОГНЕ-/ВЗРЫВОЗАЩИЩЕННОСТИ УСТРОЙСТВА.

Рис. 7. Ex e mb [ib] IIC или Ex tb IIIC Монтажная схема 3

Метод защиты LCP100	Источник питания LCP100	Порядок подключения проводов от логического устройства	Режим DVC6200 SIS (ток или напряжение)
Ex e mb [ib] IIC Ex tb IIIC	КОНТУР	LCP100, затем DVC6200 SIS	Двухточечный


ПРИМЕЧАНИЯ

 $\fbox{1}$ МИНИМАЛЬНЫЙ ВЫХОДНОЙ СИГНАЛ ЛОГИЧЕСКОГО УСТРОЙСТВА ДОЛЖЕН СОСТАВЛЯТЬ НЕ МЕНЕЕ 8 ма. LCP100 ПРИ ПИТАНИИ ОТ КОНТУРА ПОТРЕБЛЯЕТ ПРИБЛИЗИТЕЛЬНО 4 ма.

2 ДЛЯ ОГНЕ-/ВЗРЫВОЗАЩИЩЕННЫХ ДОПУЩЕННЫХ ЦИФРОВЫХ КОНТРОЛЛЕРОВ КЛАПАНОВ УСТАНОВИТЬ КАБЕЛЬНУЮ ГЕРМЕТИЗАЦИЮ ИЛИ ОГНЕЗАЩИЩЕННЫЕ КАБЕЛЬНЫЕ САЛЬНИКИ, КАК ЭТО НЕОБХОДИМО ДЛЯ ПОДДЕРЖАНИЯ ОГНЕ-/ВЗРЫВОЗАЩИЩЕННОСТИ УСТРОЙСТВА

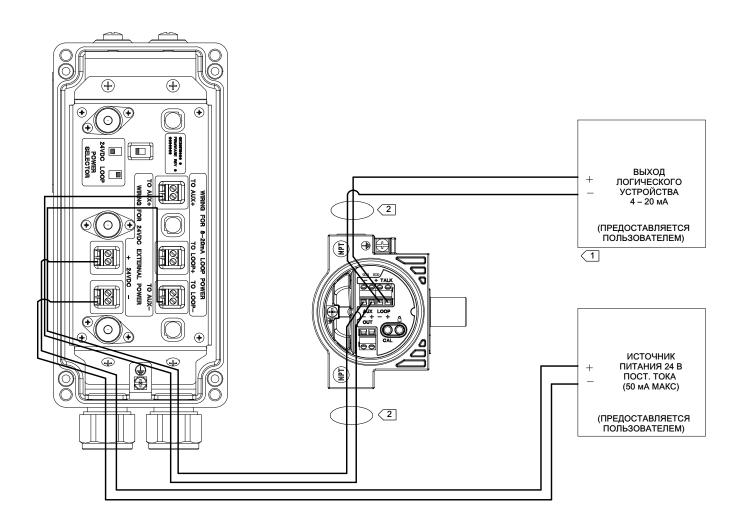
Рис. 8. Ex e mb [ib] IIC или Ex tb IIIC Монтажная схема 4

Метод защиты LCP100	Источник питания LCP100	Порядок подключения проводов от логического устройства	Режим DVC6200 SIS (ток или напряжение)
Ex e mb [ib] IIC Ex tb IIIC	КОНТУР	LCP100, затем DVC6200 SIS	Многоточечный

ПРИМЕЧАНИЯ

1 ССР100 ПРИ ПИТАНИИ ОТ КОНТУРА ПОТРЕБЛЯЕТ ПРИБЛИЗИТЕЛЬНО 4 мА.

ДЛЯ ОГНЕ-/ВЗРЫВОЗАЩИЩЕННЫХ ДОПУЩЕННЫХ ЦИФРОВЫХ КОНТРОЛЛЕРОВ КЛАПАНОВ УСТАНОВИТЬ КАБЕЛЬНУЮ ГЕРМЕТИЗАЦИЮ ИЛИ ОГНЕЗАЩИЩЕННЫЕ КАБЕЛЬНЫЕ САЛЬНИКИ, КАК ЭТО НЕОБХОДИМО ДЛЯ ПОДДЕРЖАНИЯ ОГНЕ-/ВЗРЫВОЗАЩИЩЕННОСТИ УСТРОЙСТВА.

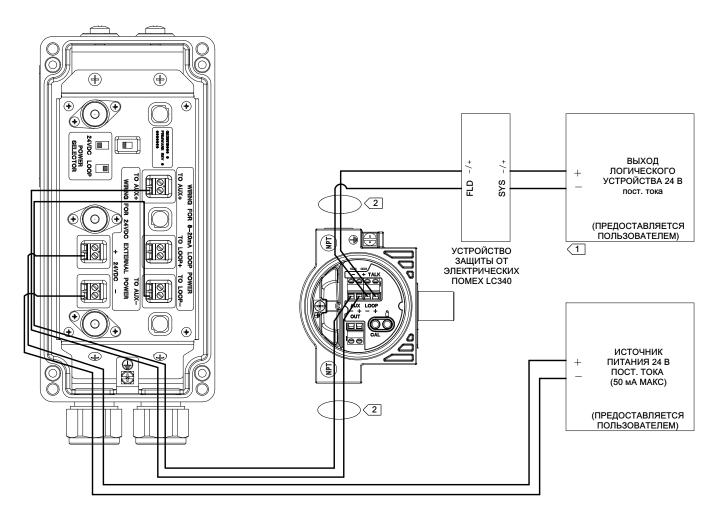

Ex tb IIIC

ТОКА

Метод защиты LCP100	Источник питания LCP100	Порядок подключения проводов от логического устройства	Режим DVC6200 SIS (ток или напряжение)
Ex e mb [ib] IIC	24 В ПОСТ.	DVC6200 SIS 2270M I CD100	Прухтополиций

DVC6200 SIS, затем LCP100

Двухточечный

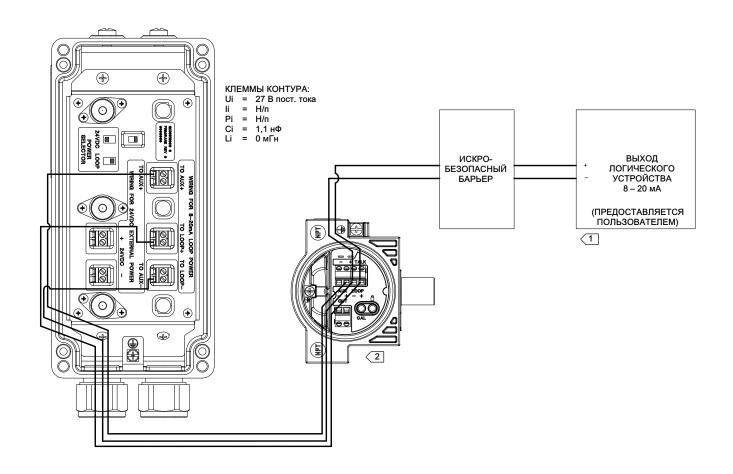

ПРИМЕЧАНИЯ

ЕСЛИ ДЛЯ LCP100 ДОСТУПНО ПИТАНИЕ 24 В ПОСТ. ТОКА, НЕ ТРЕБУЕТСЯ
ПОДКЛЮЧАТЬ + КОНТУРА ЦИФРОВОГО КОНТРОЛЛЕРА КЛАПАНОВ К + КОНТУРА LCP100.
В ПРОТИВНОМ СЛУЧАЕ ЭТО ПРИВЕДЕТ К НЕНУЖНОМУ ПОТРЕБЛЕНИЮ ПАНЕЛЬЮ
LCP100 ТОКА 4 мА ЗА СЧЕТ ЦИФРОВОГО КОНТРОЛЛЕРА КЛАПАНОВ.

2 ДЛЯ ОГНЕ-/ВЗРЫВОЗАЩИЩЕННЫХ ДОПУЩЕННЫХ ЦИФРОВЫХ КОНТРОЛЛЕРОВ КЛАПАНОВ УСТАНОВИТЬ КАБЕЛЬНУЮ ГЕРМЕТИЗАЦИЮ ИЛИ ОГНЕЗАЩИЩЕННЫЕ КАБЕЛЬНЫЕ САЛЬНИКИ, КАК ЭТО НЕОБХОДИМО ДЛЯ ПОДДЕРЖАНИЯ ОГНЕ-/ВЗРЫВОЗАЩИЩЕННОСТИ УСТРОЙСТВА.

Рис. 10. Ex e mb [ib] IIC или Ex tb IIIC Монтажная схема 6

Метод защиты LCP100	Источник питания LCP100	Порядок подключения проводов от логического устройства	Режим DVC6200 SIS (ток или напряжение)
Ex e mb [ib] IIC Ex tb IIIC	24 В ПОСТ. ТОКА	DVC6200 SIS, затем LCP100	Многоточечный

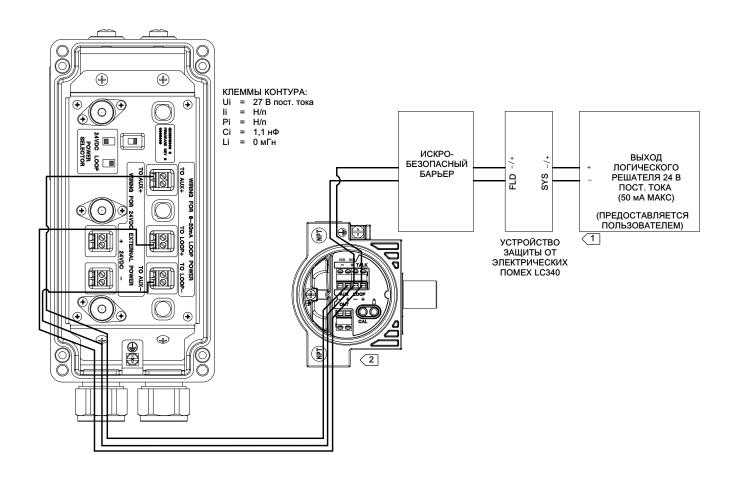

ПРИМЕЧАНИЯ

Т ЕСЛИ ДЛЯ LCP100 ДОСТУПНО ПИТАНИЕ 24 В ПОСТ. ТОКА, НЕ ТРЕБУЕТСЯ ПОДКЛЮЧАТЬ + КОНТУРА ЦИФРОВОГО КОНТРОЛЛЕРА КЛАПАНОВ К + КОНТУРА LCP100. В ПРОТИВНОМ СЛУЧАЕ ЭТО ПРИВЕДЕТ К НЕНУЖНОМУ ПОТРЕБЛЕНИЮ ПАНЕЛЬЮ LCP100 ТОКА 4 МА ЗА СЧЕТ ЦИФРОВОГО КОНТРОЛЛЕРА КЛАПАНОВ.

2 ДЛЯ ОГНЕ-/ВЗРЫВОЗАЩИЩЕННЫХ ДОПУЩЕННЫХ ЦИФРОВЫХ КОНТРОЛЛЕРОВ КЛАПАНОВ УСТАНОВИТЬ КАБЕЛЬНУЮ ГЕРМЕТИЗАЦИЮ ИЛИ ОГНЕЗАЩИЩЕННЫЕ КАБЕЛЬНЫЕ САЛЬНИКИ, КАК ЭТО НЕОБХОДИМО ДЛЯ ПОДДЕРЖАНИЯ ОГНЕ-/ВЗРЫВОЗАЩИЩЕННОСТИ УСТРОЙСТВА.

Рис. 11. Ex ic IIC [ib] IIC или Ex tb IIIC Монтажная схема 1

Метод защиты LCP100	Источник питания LCP100	Порядок подключения проводов от логического устройства	Режим DVC6200 SIS (ток или напряжение)
Ex ic IIC Ex tb IIIC	КОНТУР	DVC6200 SIS, затем LCP100	Двухточечный

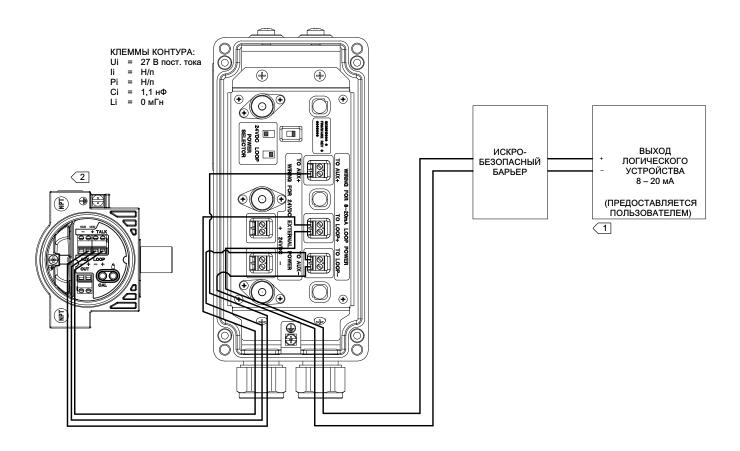

ПРИМЕЧАНИЯ

1 МИНИМАЛЬНЫЙ ВЫХОДНОЙ СИГНАЛ ЛОГИЧЕСКОГО УСТРОЙСТВА ДОЛЖЕН СОСТАВЛЯТЬ НЕ МЕНЕЕ 8 мА. LCP100 ПРИ ПИТАНИИ ОТ КОНТУРА ПОТРЕБЛЯЕТ ПРИБЛИЗИТЕЛЬНО 4 мА.

2 СМ. КРАТКОЕ РУКОВОДСТВО ПО СЕРИИ DVC6200 (D103556X012) ДЛЯ ПОЛУЧЕНИЯ ИНФОРМАЦИИ ПО СХЕМАМ ПРОВОДКИ И ПАРАМЕТРАМ ПО КАТЕГОРИИ ЗАЩИТЫ.

Рис. 12. Ex ic IIC [ib] IIC или Ex tb IIIC Монтажная схема 2

Метод защиты LCP100	Источник питания LCP100	Порядок подключения проводов от логического устройства	Режим DVC6200 SIS (ток или напряжение)
Ex ic IIC Ex tb IIIC	КОНТУР	DVC6200 SIS, затем LCP100	Многоточечный

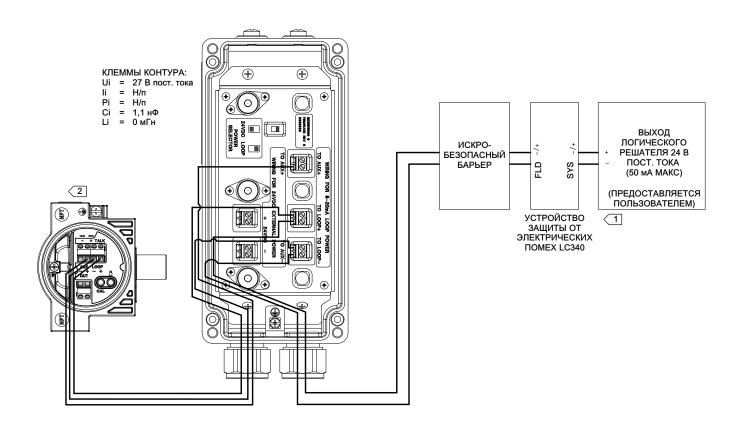

ПРИМЕЧАНИЯ

1 СР100 ПРИ ПИТАНИИ ОТ КОНТУРА ПОТРЕБЛЯЕТ ПРИБЛИЗИТЕЛЬНО 4 мА.

2 CM. КРАТКОЕ РУКОВОДСТВО ПО СЕРИИ DVC6200 (D103556X012) ДЛЯ ПОЛУЧЕНИЯ ИНФОРМАЦИИ ПО СХЕМАМ ПРОВОДКИ И ПАРАМЕТРАМ ПО КАТЕГОРИИ ЗАЩИТЫ.

Рис. 13. Ex ic IIC [ib] IIC или Ex tb IIIC Монтажная схема 3

Метод защиты LCP100	Источник питания LCP100	Порядок подключения проводов от логического устройства	Режим DVC6200 SIS (ток или напряжение)
Ex ic IIC Ex tb IIIC	КОНТУР	LCP100, затем DVC6200 SIS	Двухточечный

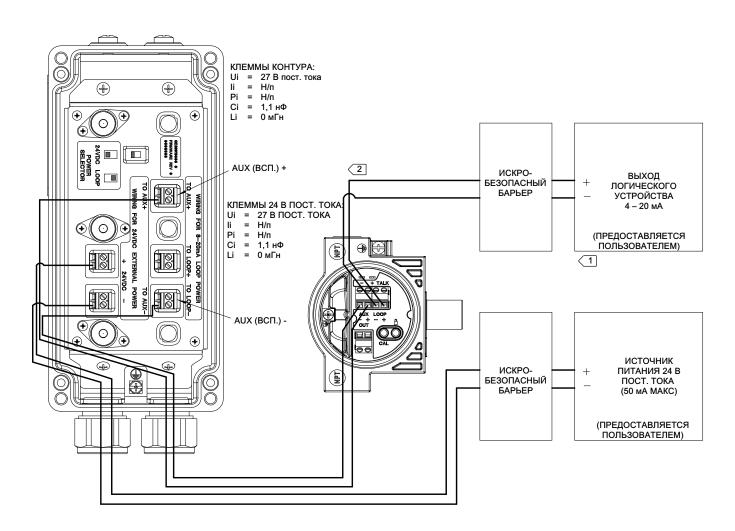

ПРИМЕЧАНИЯ

1 МИНИМАЛЬНЫЙ ВЫХОДНОЙ СИГНАЛ ЛОГИЧЕСКОГО УСТРОЙСТВА ДОЛЖЕН СОСТАВЛЯТЬ НЕ МЕНЕЕ 8 мА. LCP100 ПРИ ПИТАНИИ ОТ КОНТУРА ПОТРЕБЛЯЕТ ПРИБЛИЗИТЕЛЬНО 4 мА.

2 СМ. КРАТКОЕ РУКОВОДСТВО ПО СЕРИИ DVC6200 (D103556X012) ДЛЯ ПОЛУЧЕНИЯ ИНФОРМАЦИИ ПО СХЕМАМ ПРОВОДКИ И ПАРАМЕТРАМ ПО КАТЕГОРИИ ЗАЩИТЫ.

Рис. 14. Ex ic IIC [ib] IIC или Ex tb IIIC Монтажная схема 4

Метод защиты LCP100	Источник питания LCP100	Порядок подключения проводов от логического устройства	Режим DVC6200 SIS (ток или напряжение)
Ex ic IIC Ex tb IIIC	КОНТУР	LCP100, затем DVC6200 SIS	Многоточечный


ПРИМЕЧАНИЯ

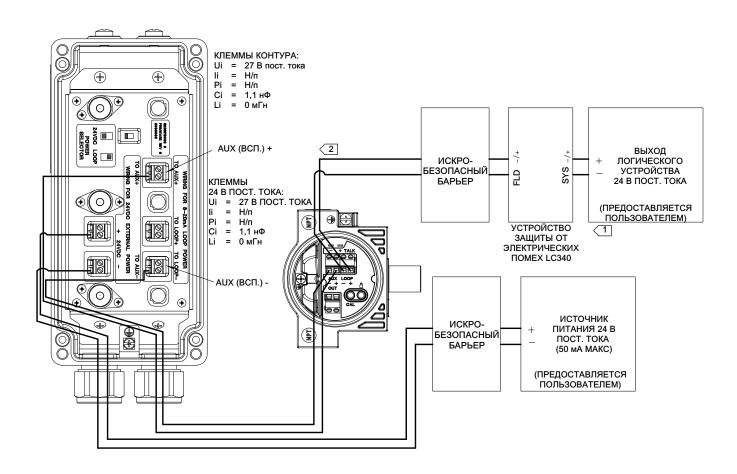
1 LCP100 ПРИ ПИТАНИИ ОТ КОНТУРА ПОТРЕБЛЯЕТ ПРИБЛИЗИТЕЛЬНО 4 мА.

2) СМ. КРАТКОЕ РУКОВОДСТВО ПО СЕРИИ DVC6200 (D103556X012) ДЛЯ ПОЛУЧЕНИЯ ИНФОРМАЦИИ ПО СХЕМАМ ПРОВОДКИ И ПАРАМЕТРАМ ПО КАТЕГОРИИ ЗАЩИТЫ.

Рис. 15. Ex ic IIC [ib] IIC или Ex tb IIIC Монтажная схема 5

Метод защиты LCP100	Источник питания LCP100	Порядок подключения проводов от логического устройства	Режим DVC6200 SIS (ток или напряжение)
Ex ic IIC Ex tb IIIC	24 В ПОСТ. ТОКА	DVC6200 SIS, затем LCP100	Двухточечный

ПРИМЕЧАНИЯ

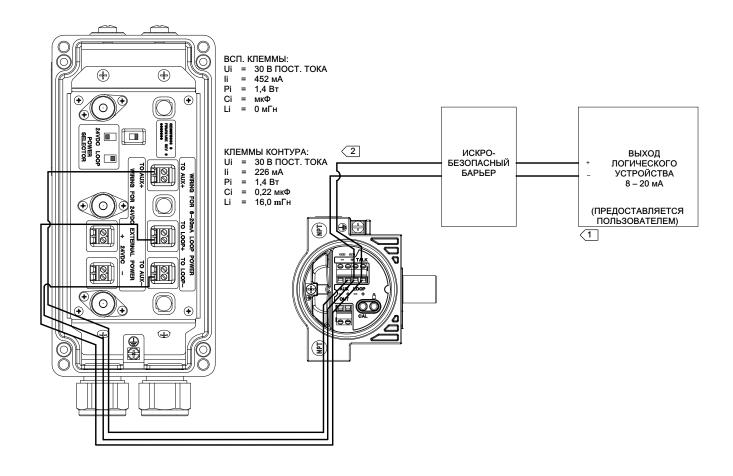

ТО ЕСЛИ ДЛЯ LCP100 ДОСТУПНО ПИТАНИЕ 24 В ПОСТ. ТОКА, НЕ ТРЕБУЕТСЯ ПОДКЛЮЧАТЬ + КОНТУРА ЦИФРОВОГО КОНТРОЛЛЕРА КЛАПАНОВ К + КОНТУРА LCP100. В ПРОТИВНОМ СЛУЧАЕ ЭТО ПРИВЕДЕТ К НЕНУЖНОМУ ПОТРЕБЛЕНИЮ ПАНЕЛЬЮ LCP100 ТОКА 4 МА ЗА СЧЕТ ЦИФРОВОГО КОНТРОЛЛЕРА КЛАПАНОВ.

2 CM. КРАТКОЕ РУКОВОДСТВО ПО СЕРИИ DVC6200 (D103556X012) ДЛЯ ПОЛУЧЕНИЯ ИНФОРМАЦИИ ПО СХЕМАМ ПРОВОДКИ И ПАРАМЕТРАМ ПО КАТЕГОРИИ ЗАЩИТЫ.

Май 2020 г.

Рис. 16. Ex ic IIC [ib] IIC или Ex tb IIIC Монтажная схема 6

Метод защиты LCP100	Источник питания LCP100	Порядок подключения проводов от логического устройства	Режим DVC6200 SIS (ток или напряжение)
Ex ic IIC Ex tb IIIC	24 В ПОСТ. ТОКА	DVC6200 SIS, затем LCP100	Многоточечный

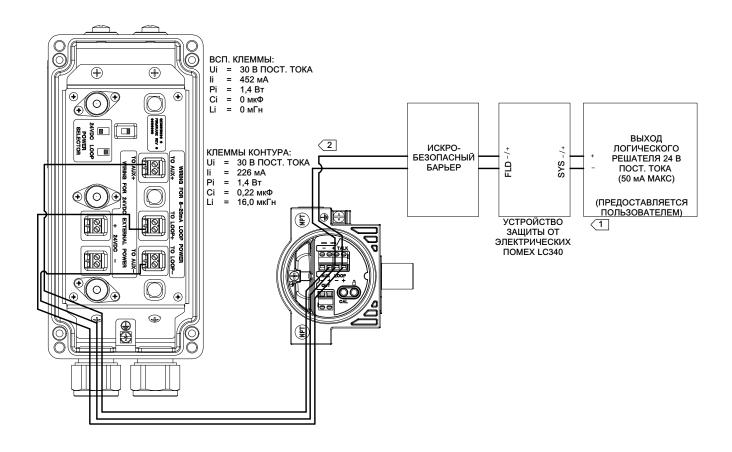

ПРИМЕЧАНИЯ

1 ЕСЛИ ДЛЯ LCP100 ДОСТУПНО ПИТАНИЕ 24 В ПОСТ. ТОКА, НЕ ТРЕБУЕТСЯ ПОДКЛЮЧАТЬ + КОНТУРА ЦИФРОВОГО КОНТРОЛЛЕРА КЛАПАНОВ К + КОНТУРА LCP100. В ПРОТИВНОМ СЛУЧАЕ ЭТО ПРИВЕДЕТ К НЕНУЖНОМУ ПОТРЕБЛЕНИЮ ПАНЕЛЬЮ LCP100 ТОКА 4 мА ЗА СЧЕТ ЦИФРОВОГО КОНТРОЛЛЕРА КЛАПАНОВ.

 \bigcirc СМ. КРАТКОЕ РУКОВОДСТВО ПО СЕРИИ DVC6200 (D103556X012) ДЛЯ ПОЛУЧЕНИЯ ИНФОРМАЦИИ ПО СХЕМАМ ПРОВОДКИ И ПАРАМЕТРАМ ПО КАТЕГОРИИ ЗАЩИТЫ.

Рис. 17. Ex ia IIB или Ex tb IIIC Монтажная схема 1

Mетод з LCP	•	Источник питания LCP100	Порядок подключения проводов от логического устройства	Режим DVC6200 SIS (ток или напряжение)
Ex ia Ex tt	a IIB o IIIC	КОНТУР	DVC6200 SIS, затем LCP100	Двухточечный

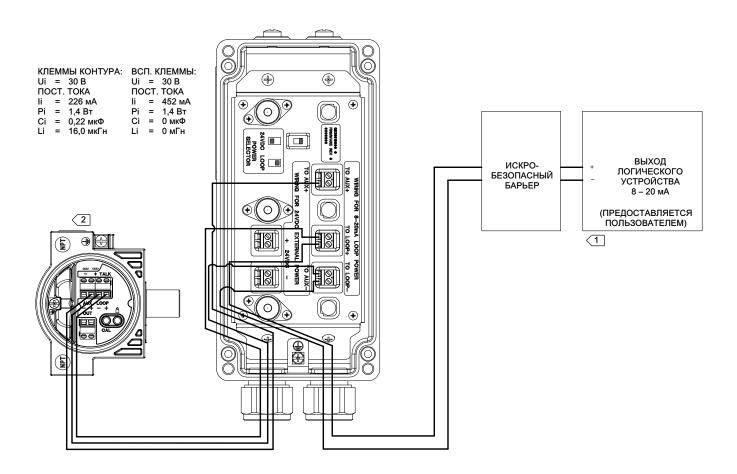

ПРИМЕЧАНИЯ

МИНИМАЛЬНЫЙ ВЫХОДНОЙ СИГНАЛ ЛОГИЧЕСКОГО УСТРОЙСТВА ДОЛЖЕН СОСТАВЛЯТЬ НЕ МЕНЕЕ 8 мА. LCP100
ПРИ ПИТАНИИ ОТ КОНТУРА ПОТРЕБЛЯЕТ ПРИБЛИЗИТЕЛЬНО 4 мА.

 \bigcirc CM. КРАТКОЕ РУКОВОДСТВО ПО СЕРИИ DVC6200 (D103556X012) ДЛЯ ПОЛУЧЕНИЯ ИНФОРМАЦИИ ПО СХЕМАМ ПРОВОДКИ И ПАРАМЕТРАМ ПО КАТЕГОРИИ ЗАЩИТЫ.

Рис. 18. Ex ia IIB или Ex tb IIIC Монтажная схема 2

Метод защиты LCP100	Источник питания LCP100	Порядок подключения проводов от логического устройства	Режим DVC6200 SIS (ток или напряжение)
Ex ia IIB Ex tb IIIC	КОНТУР	DVC6200 SIS, затем LCP100	Многоточечный

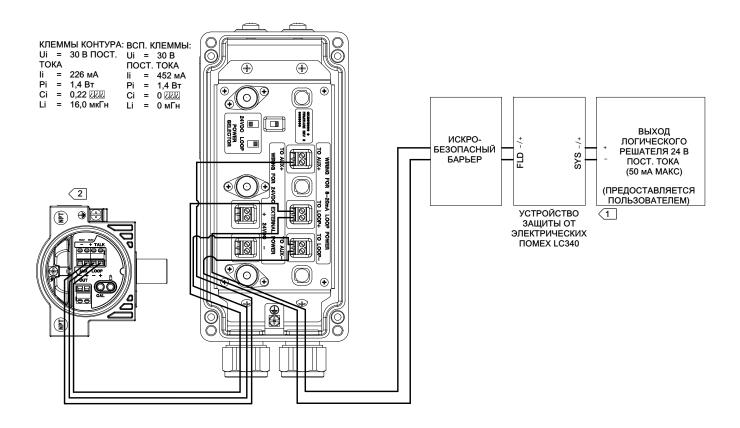

ПРИМЕЧАНИЯ

1 ССР100 ПРИ ПИТАНИИ ОТ КОНТУРА ПОТРЕБЛЯЕТ ПРИБЛИЗИТЕЛЬНО 4 мА.

 $\fbox{2}$ СМ. КРАТКОЕ РУКОВОДСТВО ПО СЕРИИ DVC6200 (D103556X012) ДЛЯ ПОЛУЧЕНИЯ ИНФОРМАЦИИ ПО СХЕМАМ ПРОВОДКИ И ПАРАМЕТРАМ ПО КАТЕГОРИИ ЗАЩИТЫ.

Рис. 19. Ex ia IIB или Ex tb IIIC Монтажная схема 3

Метод защ LCP100	Источник питания LCP100	Порядок подключения проводов от логического устройства	Режим DVC6200 SIS (ток или напряжение)
Ex ia IIE Ex tb III	КОНТУР	LCP100, затем DVC6200 SIS	Двухточечный


ПРИМЕЧАНИЯ

1 МИНИМАЛЬНЫЙ ВЫХОДНОЙ СИГНАЛ ЛОГИЧЕСКОГО УСТРОЙСТВА ДОЛЖЕН СОСТАВЛЯТЬ НЕ МЕНЕЕ 8 МА. LCP100 ПРИ ПИТАНИИ ОТ КОНТУРА ПОТРЕБЛЯЕТ ПРИБЛИЗИТЕЛЬНО 4 МА.

2 СМ. КРАТКОЕ РУКОВОДСТВО ПО СЕРИИ DVC6200 (L/103000012) ДЛЯ ПОЛУЧЕНИЯ ИНФОРМАЦИИ ПО СХЕМАМ ПРОВОДКИ И ПАРАМЕТРАМ ПО КАТЕГОРИИ ЗАЩИТЫ. СМ. КРАТКОЕ РУКОВОДСТВО ПО СЕРИИ DVC6200 (D103556X012)

Рис. 20. Ex ia IIB или Ex tb IIIC Монтажная схема 4

Метод защиты LCP100	Источник питания LCP100	Порядок подключения проводов от логического устройства	Режим DVC6200 SIS (ток или напряжение)
Ex ia IIB Ex tb IIIC	КОНТУР	LCP100, затем DVC6200 SIS	Многоточечный

ПРИМЕЧАНИЯ

1 СР100 ПРИ ПИТАНИИ ОТ КОНТУРА ПОТРЕБЛЯЕТ ПРИБЛИЗИТЕЛЬНО 4 мА.

2 CM. КРАТКОЕ РУКОВОДСТВО ПО СЕРИИ DVC6200 (D103556X012) ДЛЯ ПОЛУЧЕНИЯ ИНФОРМАЦИИ ПО СХЕМАМ ПРОВОДКИ И ПАРАМЕТРАМ ПО КАТЕГОРИИ ЗАЩИТЫ.

Испытание перед настройкой

Перед подключением панели LCP100 к технологической линии провести следующие испытания на панели LCP100, подключенной к контроллеру DVC6200 SIS.

Успешная проверка неполного хода

- 1. Нажать и удерживать (нижнюю) кнопку испытания клапана более 3 секунд (но менее 10 секунд).
- 2. Убедиться, что зеленый индикатор начинает мигать с началом движения клапана.
- 3. Убедиться, что клапан перемещается не дальше настроенного ограничения для неполного хода.
- Убедиться, что клапан возвращается в нормальное рабочее положение и зеленый индикатор начинает гореть постоянно.

Вручную прерванная проверка неполного хода

- 1. Нажать и удерживать (нижнюю) кнопку испытания клапана более 3 секунд (но менее 10 секунд).
- 2. Убедиться, что зеленый индикатор начинает мигать с началом движения клапана.
- 3. До достижения клапаном ограничения, настроенного для испытания неполного хода, нажать кнопку испытания клапана или кнопку рядом с зеленым индикатором.
- 4. Убедиться, что клапан немедленно возвращается в нормальное рабочее положение и зеленый индикатор начинает гореть постоянно.

Экстренное потребление через логическое устройство

1. Уменьшить ток для DVC6200 SIS до 4 мА (для отключения питания путем размыкания).

Примечание

Для установки с питанием от цепи в состоянии размыкания/безопасного потребления для обеспечения правильной работы кнопок и индикаторов минимальным током является 8 мА.

- 2. Убедиться, что клапан переходит в состояние отказоустойчивости.
- 3. Убедиться, что красный индикатор начинает непрерывно гореть, а желтый индикатор остается выключенным.
- 4. Нажать кнопку рядом с зеленым индикатором и убедиться, что клапан не двигается.
- 5. Уменьшить ток для DVC6200 SIS до 20 мА (для отключения питания путем размыкания) и убедиться, что клапан продолжает оставаться в состоянии отказоустойчивости.
- 6. Убедиться, что красный индикатор продолжает непрерывно гореть, загорается желтый индикатор и начинает непрерывно гореть (готовность к сбросу).
- 7. Нажать кнопку рядом с зеленым индикатором.
- 8. Убедиться, что красный индикатор выключается, клапан переходит в нормальное рабочее положение, а затем загорается зеленый индикатор и начинает непрерывно гореть.

Экстренное потребление через местную панель управления

- 1. Нажать кнопку рядом с красным индикатором.
- 2. Убедиться, что клапан переходит в положение отказоустойчивости.
- 3. Убедиться, что красный и желтый индикаторы начинают непрерывно гореть (готовность к сбросу).
- 4. Нажать кнопку рядом с зеленым индикатором.
- 5. Убедиться, что красный индикатор выключается, клапан переходит в нормальное рабочее положение, а затем загорается зеленый индикатор и начинает непрерывно гореть.

Настройка

Для правильной работы панели LCP100 ее необходимо подключить к контроллеру DVC6200 SIS с микропрограммой версии 3 или более поздней или контроллеру DVC6000 SIS с микропрограммой версии 7 или более поздней. После выполнения физического подключения использовать следующий контрольный перечень для настройки LCP100. При необходимости дополнительную информацию см. в руководстве DVC6200 SIS (D103557X012) или руководстве DVC6000 SIS (D103230X012).

• С помощью полевого коммуникатора 475 выбрать *Configure (Настройка) > Guided Setup (Пошаговая настройка по инструкции) > Device Setup (Настройка устройства)*. Следовать указаниям на полевом коммуникаторе:

Ввести давление подачи и единицу измерения.

Ввести изготовителя, модель и размер привода.

Ввести начальную точку проверки неполного хода, тип реле и состояние нулевой мощности [выбрать прибор, подключенный к местной панели управления (LCP100)].

- Следовать запросам для завершения настройки устройства. Следующие параметры будут автоматически заданы в разделе Travel Alerts (Сигналы тревоги хода):
 - Ні Ні / Lo Lo Enable (Включить верхнюю/нижнюю аварийную границу) Yes (Да)
 - Lo Lo Point (Аварийная нижняя граница) (%) 1
 - Hi Hi Point (Аварийная верхняя граница) (%) 99
 - Deadband (Зона нечувствительности) (%) 0,5
 - о DVC Power Up (Увеличение питания цифрового контроллера клапана) (%) Manual Reset (Ручной сброс)
- Продолжать настраивать цифровой контроллер клапанов в соответствии с нормальной процедурой настройки.
- Перед отсоединением привести прибор в рабочее состояние.

Примечание

Другим способом настройки панели LCP100 является ручная настройка. С помощью полевого коммуникатора выбрать Configure (Настройка) > Manual Setup (Ручная настройка) > Instrument (Прибор) > Terminal Box (Клеммная коробка) > Edit Auxiliary Terminal Action (Редактирование действия вспомогательной клеммы) > SIS Local Control Panel (Местная панель управления SIS). После загрузки этой настройки на устройство отобразится информационный экран, уведомляющий о настройке некоторых дополнительных параметров. Выбрать Yes (Да).

Принцип действия

Индикаторы показывают состояние клапана в соответствии с табл. 4.

Май 2020 г.

Таблица 4. Работа индикаторов и кнопок панели Fisher LCP100

			ПЕРЕВЕСТИ УКАЗАННУЮ КНОПКУ		
инди	KATOP LCP100	возможные условия	Вверх	В среднее положение	Вниз
	Горит	Клапан находится в нормальном рабочем состоянии.		Отключение	Запуск PST
	Быстро мигает (1/2 секунды)	Клапан находится в процессе выполнения проверки неполного хода (PST).	Останов PST	Отключение	Останов PST
Зеленый		Клапан находится не в нормальном рабочем положении, поскольку давление привода является низким или клапан застрял.	Подтверждение сбоя PST	Отключение	Запуск PST
(+)		Клапан отключен, но застрял в нормальном положении.			
	Медленно мигает (1 секунда)	Сбой проверки неполного хода.	Подтверждение сбоя PST	Отключение	Запуск PST
	Горит	Клапан отключен из-за снижения давления привода (например, отключение электромагнитного клапана).	Подтверждение сбоя PST	Отключение	Запуск PST
Красный		Клапан отключен из-за команды от логического устройства или панели LCP100.			
pac		Клапан застрял в отключенном состоянии.			
¥	Быстро мигает (1/2 секунды)	Клапан находится в положении середины хода после отключения. Клапан может двигаться или застрять в этом положении.			
Желтый	Горит	Клапан можно сбросить до нормального рабочего состояния.	Сброс в нормальное состояние		

ПРИМЕЧАНИЯ

Примечание

Основная функция безопасности должна быть реализована путем контроля тока (в режиме точка-точка) или напряжения (в многоканальном режиме) от логического устройства. Красная кнопка не предназначена для выполнения основной функции безопасности для технологического процесса.

Техническое обслуживание

А ПРЕДУПРЕЖДЕНИЕ

Опасность электростатического разряда. Не протирать и не очищать панель LCP100 с применением растворителей при наличии воспламеняемых паров. Это может привести к взрыву.

У панели LCP100 есть четыре основных компонента: корпус, индикаторы, кабельные вводы и электроника. Если индикатор не работает, его можно заменить индикатором соответствующего цвета. Кабельные вводы обычно не нуждаются в замене. Модуль электроники можно заменить Если есть какие-либо ошибки с модулем электроники, рекомендуется заменить весь блок.

Поиск и устранение неисправностей прибора

При возникновении трудностей с панелью управления LCP100 см. табл. 5.

^{1.} Если зеленый, красный и желтый индикаторы последовательно мигают, контроллер DVC6200 SIS не работает. В многоканальном режиме DVC6200 SIS не будет реагировать на отключение по команде логического устройства.

^{2.} В зависимости от конфигурации клапана аварийного останова верхнее положение кнопки может быть промаркировано Valve Open («Клапан открыт»), а среднее положение кнопки может быть промаркировано Valve Close (Клапан закрыт); или наоборот. Нижнее положение кнопки будет всегда промаркировано Valve Test (Тест клапана).

^{3.} Подтверждение отказа PST означает, что LCP100 подаст команду на переход от мигания зеленого индикатора к его постоянному включению. С помощью DVC6200 SIS через протокол HART можно будет по-прежнему видеть предупреждение PST.

^{4.} Если одновременно горят красный и зеленый индикаторы, клапан дросселирует в середине хода.

^{5.} Информация в этой таблице относится к микропрограммам, имеющим версию 9 и более позднюю

D103272X0RU Май 2020 г.

Таблица 5. Поиск и устранение неисправностей прибора

Признак	Возможная причина	Действие
1. Индикаторы не горят.	1. Панель LCP100 неправильно подключена к вспомогательной клемме цифрового контроллера клапанов.	1. Убедиться, что панель LCP100 правильно подключена к вспомогательной клемме цифрового контроллера клапанов, как описано в разделе "Установка" данного руководства.
2. Панель LCP100 правильно подключена к вспомогательной клемме цифрового контроллера клапанов, но индикаторы не горят.	2. Некорректное положение переключателя питания.	2. Убедиться в том, что переключатель питания установлен правильно. Если используется электрическая цепь, убедиться, что переключатель находится в положении LOOP, а НЕ в положении 24 В пост. тока, и наоборот.
3. Переключатель питания находится в правильном положении, но индикаторы не горят.	3. Выбран вариант питания от электрической цепи, но недостаточно тока.	3. Для работы при питании от цепи требуется ток 8 мА. Убедиться, что имеется достаточная сила тока.
4. Панель LCP100 и цифровой контроллер клапанов соединены правильно и имеется достаточная сила тока, но индикаторы не горят.	4. Может быть поврежден светодиод.	4. Заменить светодиод.
5. Индикаторы мигают.	5. Клапан не находится в положении нормальной остановки.	5. Проверить правильность калибровки. При необходимости выполнить повторную калибровку.
6. Калибровка правильная, но индикаторы мигают.	6. Сигналы тревоги верхней/нижней аварийной границы заданы не правильно.	6. Убедиться, что сигналы тревоги верхней/нижней аварийной границы имеют значения 99% и 1% соответственно. Для большого поворотного клапана установить значения 98% и 2% и произвести наблюдение.

Заказ деталей

Обращаясь в торговое представительство компании Emerson или к региональному бизнес-партнеру по поводу данного оборудования, обязательно сообщите сотруднику заводской номер, который находится на паспортной табличке блока.

ПРЕДУПРЕЖДЕНИЕ

Используйте только оригинальные запасные части производства компании Fisher. В приборах Fisher ни при каких обстоятельствах не должны использоваться компоненты, поставляемые не компанией Emerson Automation Solutions. Использование компонентов, поставленных не компанией Emerson Automation Solutions, влечет за собой аннулирование гарантии и сертификаций для использования в опасной зоне, а также может отрицательно сказаться на характеристиках прибора и привести к травме и материальному ущербу.

Комплекты деталей

VALVE OPEN, VALVE CLOSE,

Описание

Детали

Артикул LED Assemblies Kit (see figure 22) Includes LED's (qty. 3); Yellow, Red, and Примечание Green (keys 11*, 12*, and 13*) Информацию о заказе запчастей можно получить в местном and fasteners (qty. 6) (key 8) GE25751X012 торговом представительстве компании Emerson. **Enclosure Labels Kit** Includes labels (qty. 6); OPEN, CLOSED,

READY TO RESET, and VALVE TEST GF25750X012 Позиция Описание

Switch Cover Kit Includes switch actuator shroud cover (qty. 3) and Enclosure Labels (qty. 6); OPEN, CLOSED, VALVE OPEN, VALVE CLOSE, READY TO RESET, and VALVE TEST GE23730X022

См. рисунок 21

3/4 NPT Conduit (2 reg'd) M20 Conduit (2 req'd)

^{*}Рекомендованные запасные части

Рис. 21. Панель Fisher LCP100 в сборе

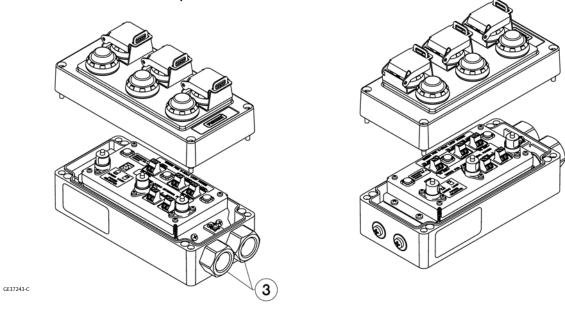
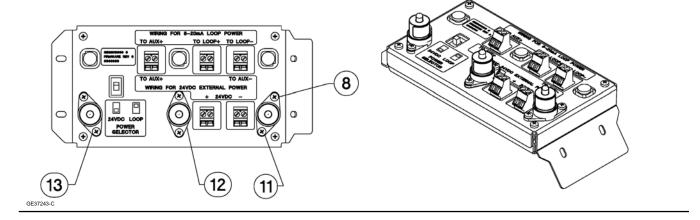



Рис. 22. Электронный модуль

Май 2020 г.

Условия применения

- 1. Панель управления типа LCP100 должна применяться в соответствии с присвоенной маркировкой взрывозащиты, требованиями ТР ТС 012/2011, ГОСТ 30852.13-2002 (МЭК 60079-14:1996) действующих «Правил устройства электроустановок» (ПУЭ гл. 7.3), «Правил технической эксплуатации электроустановок потребителей» (ПТЭЭП гл. 3.4), других нормативных документов, регламентирующих применение электрооборудования во взрывоопасных зонах, и инструкции изготовителя по эксплуатации D103272X012.
- 2. Возможные взрывоопасные зоны применения панели управления, категории и группы взрывоопасных смесей газов и паров с воздухом в соответствии с требованиями ГОСТ 30852.9-2002 (МЭК 60079-10:1995), ГОСТ 30852.5-2002 (МЭК 60079-4:1975) и «Правил устройства электроустановок» (ПУЭ гл. 7.3).
- 3. Знак «Х», стоящий после маркировки взрывозащиты, означает:
 - а. при эксплуатации запрещается пользоваться панелью с поврежденным корпусом. Необходимо учитывать опасность электростатических разрядов. При эксплуатации и обслуживании панели запрещаются чистка, протирка и другие действия, нарушающие электростатическую безопасность;
 - b. панель необходимо оберегать от механических ударов.
- 4. Подключение к панели внешнего источника питания должно производиться в соответствии с инструкцией по эксплуатации D103272X012.
- 5. Внесение в конструкцию панели управления изменений, касающихся средств взрывозащиты, должно быть согласовано с аккредитованной испытательной организацией.

Уполномоченный представитель: Emerson LLC, Россия, Москва, ул. Дубининская, д. 53, стр. 5, 115054

Год изготовления см. на паспортной табличке изделия.

Май 2020 г.

Hu Emerson, ни Emerson Automation Solutions, а также ни одна из их дочерних компаний не несут ответственности за правильность выбора, использования и технического обслуживания любого из изделий. Ответственность за правильность выбора, использования и технического обслуживания любого изделия возлагается исключительно на покупателя и конечного пользователя.

Fisher, FIELDVUE и Bettis являются товарными знаками, принадлежащими одной из компаний коммерческого подразделения Emerson Automation Solutions компании Emerson Electric Co. Emerson Automation Solutions, Emerson и логотип Emerson являются товарными и сервисными знаками Emerson Electric Co. HART является зарегистрированной торговой маркой компании FieldComm Group. Все другие знаки являются собственностью соответствующих владельцев.

Данные, представленные в данном документе, приводятся исключительно в информационных целях. Несмотря на то что было сделано все возможное для обеспечения точности содержащейся в нем информации, документ не содержит никаких гарантий, явных или подразумеваемых, в отношении изделий или услуг, описанных в ней, а также их применимости. Продажа изделий осуществляется в соответствии с установленными сроками и условиями, ознакомиться с которыми можно по запросу. Компания оставляет за собой право изменять или совершенствовать конструкцию и технические характеристики этих изделий в любое время без предварительного уведомления.

Компания Emerson Automation Solutions Россия, 115054, г. Москва, Серне (Сеглау), 68700 Франция ул. Дубининская, 53, стр. 5 Тел.: +7 (495) 995-95-59

Тел.: +7 (495) 995-95-59 Факс: +7 (495) 424-88-50 Info.Ru@Emerson.com www.emersonprocess.ru

