April 2011

# Tartarini™ Trunnion Mounted Ball Valve

## **Contents**

| Introduction                   | 1  |
|--------------------------------|----|
| Principle of Operation         | 2  |
| Specifications                 | 2  |
| Installation and Commissioning | 2  |
| Startup                        | 5  |
| Maintenance                    | 6  |
| Disassembly                    | 7  |
| Assembly                       | 7  |
| Parts Ordering                 | S  |
| Troubleshooting Guide          | 10 |



Failure to follow these instructions or to properly install and maintain this equipment could result in an explosion, fire, and/or chemical contamination causing property damage and personal injury or death.

Tartarini™ ball valves must be installed, operated, and maintained in accordance with federal, state and local codes, rules and regulations, and Emerson Process Management Regulator Technologies, Inc. (Regulator Technologies) instructions.

If the ball valve vents gas or a leak develops in the system, service to the unit may be required. Failure to correct trouble could result in a hazardous condition.

Installation, operation, and maintenance procedures performed by unqualified personnel may result in improper adjustment and unsafe operation.



Figure 1. Tartarini™ Trunnion Mounted Ball Valve

Either condition may result in equipment damage or personal injury. Use qualified personnel when installing, operating, and maintaining this ball valve.

### Introduction

## Scope of the Manual

This instruction manual provides ball valve installation, assembly, disassembly, maintenance instructions, troubleshooting guide, and parts ordering information for Tartarini™ Trunnion Mounted Ball Valve.

## **Description**

The Tartarini Trunnion Mounted Ball Valve is a generalpurpose block valve used for long-range natural gas, oil, petrochemical, and other chemical industry pipeline system. The ball valve is trunnion-mounted and is intended to function as a fully open or fully closed device.





## **Specifications**

### **Body Sizes**

DN 80, 100, 150, 200, 250, 300, 350, 400, 450, 500, and 600 / 3, 4, 6, 8, 10, 12, 14, 16, 18, 20, and 24-inches

### **End Connection Styles**

CL150, CL300, and CL600

### **General Design Standard**

Meets API 608 / API 6D standards

## **Pressure and Temperature Rating**

Meet ASME B16.34 standards

#### **Face-to-Face Dimensions**

Meet ASME B16.10 standards

### Flange Type and Dimensions

Meet ASME B16.25 standards

### **Inspection and Test**

Meet API 598 / API 6D standards

#### **Construction Materials**

Refer to Tables 1 and 2

### **Approximate Weights**

Refer to Table 8

## C, Flow Coefficients

Refer to Table 3

### **Working Temperature**

-20° to 60°C / -4° to 140°F

### **Approximate Weights**

See Table 8

## **Principle of Operation**

The main function of the Tartarini Trunnion Mounted Ball Valve is to cut off or connect the flow of fluid in a pipeline system. Via the handwheel handle or other driving device, application of torque force allows the ball to rotate 90 degrees, enough to align the ball bore to the centerline passage of the ball valve body, thus allowing fluid to pass through it. Turning the driving device clockwise closes the valve while turning it counterclockwise opens the valve. The same principle applies to any driving device used. Refer to Figure 2.

# **Installation and Commissioning**

# **WARNING**

Personal injury or system damage may result if this ball valve is installed where service conditions could exceed the limits given in the Specifications section.

Additionally, physical damage to the ball valve may result in personal injury or property damage due to escaping of accumulated fluid. To avoid such injury and damage, install the ball valve in a safe location.

### **General Installation Instructions**

Before installing the ball valve, thoroughly check the specifications stamped in the nameplate of the ball valve body and other documents that come with it. Make sure that it matches the specifications being ordered and is consistent with the installation requirements of your company.

Inspect the ball valve chamber, its sealing surface, and other parts of the valve for any shipment damage. Make sure that it is free of any dirt or foreign materials that may have collected during shipment. Use clean, soft cloth to remove any the dirt before installation.

#### **Note**

Do not turn the driving device or switch the ball valve from open to closed position without making sure that the valve chamber is cleaned. Doing so may cause the valve and valve seat to be damaged by the dirt, rust, and other residual impurities.

Check if the operation of the valve's driving device moves freely from the fully open to fully closed position. Make sure that it is not jammed and its bolts and nuts are tight.

The ball valve is in the fully open position at the time of delivery. Before installing the ball valve in the pipeline, make sure it is in the fully open position.

When installing large-diameter ball valves, place the valve on a separate platform to function as its support in order to allow horizontal movement for the valve during installation. Do not let the pipeline bear the entire weight of the valve to avoid deformation of the pipeline system.

The ball valve may be installed either horizontally or vertically and in any location. However, make sure that

Table 1. Construction Materials for Trunnion Mounted Ball Valve Cast Steel Body

| PARTS         | CAST STEEL SERIES | NACE SERIES          | STAINLESS S                              | TEEL SERIES                             | LCC, LCB SERIES     |
|---------------|-------------------|----------------------|------------------------------------------|-----------------------------------------|---------------------|
| PARIS         | WCB               | WCB                  | CF8, CF3                                 | CF8M, CF3M                              | LCB, LCC            |
| Body          | A216-WCB          | A216-WCB             | A216-WCB A351-CF8 / CF3 A351-CF8M / CF3M |                                         | A352-LCB / LCC      |
| Ball          | A105+HCr          | A105N+ENP            | A182-F304 / F304L /<br>+HCr (Nitriding)  | A182-F316 / F316L /<br>+HCr (Nitriding) | A182-F304 / CF8     |
| Dali          | A216-WCB+HCr      | A216-WCB+ENP         | A351-CF8 / CF3 /<br>+HCr (Nitriding)     | A351-CF8M / CF3M /<br>+HCr (Nitriding)  | A352-LCB / LCC +HCr |
| Stem          | F6A / F304        | F304 / 316           | A182-F304 / F304L A182-F316 / F316L      |                                         | A182-F304           |
| Seat          |                   | RPTFE (standard) / N | NYLON (High-pressure) / Pl               | PL (High-temperature)                   |                     |
| Seat Retainer | A105+Zn           | A105+ENP             | A182-F304 / F304L                        | A182-F316 / F316L                       | A182-F304           |
| Packing       |                   |                      | PTFE / PPL                               |                                         |                     |
| Gasket        |                   | SS30                 | 4+Graphite Spiral Wound G                | Sasket                                  |                     |
| Bearing       |                   |                      | PTFE / 304                               |                                         |                     |
| Spring        |                   |                      | 17-7PH / Inconel X750                    |                                         |                     |
| Stud          | A193-B7           | A193-B7M             | A193-B8                                  | A193-B8 / B8M                           | A320-L7             |
| Nut           | A194-2H           | A194-2HM             | A194-8                                   | A194-8 / 8M                             | A194-4              |

#### NOTES:

Table 2. Construction Materials for Trunnion Mounted Ball Valve Forged Steel Body

| DADTO         | CAST STEEL SERIES | NACE SERIES                                                      | STAINLESS S                | LF2 SERIES                              |             |  |  |  |  |
|---------------|-------------------|------------------------------------------------------------------|----------------------------|-----------------------------------------|-------------|--|--|--|--|
| PARTS         | A105              | A105N                                                            | A182-F304 / F304L          | A182-F316 / F316L                       | A350LF2     |  |  |  |  |
| Body          | A105              | A105N                                                            | A182-F304 / F304L          | A182-F316 / F316L                       | A350LF2     |  |  |  |  |
| Ball          | A105+HCr          | A105N+ENP                                                        |                            | A182-F316 / F316L /<br>+HCr (Nitriding) | A350LF2+HCr |  |  |  |  |
| Stem          | F6A / F304        | F304 / 316 A182-F304 / F304L A182-F316 /                         |                            | A182-F316 / F31L                        | A182-F304   |  |  |  |  |
| Seat          |                   | PTFE (standard) / NYLON (High-pressure) / PPL (High-temperature) |                            |                                         |             |  |  |  |  |
| Seat Retainer | A105+Zn           | A105+Zn A105N+ENP A182-F304 / F304L A182-F316 / F316L            |                            | A182-F316 / F316L                       | A182-F304   |  |  |  |  |
| Packing       |                   |                                                                  | Flexible Graphite          |                                         |             |  |  |  |  |
| Gasket        |                   | SS3                                                              | 04+Graphite Spiral Wound 0 | Gasket                                  |             |  |  |  |  |
| Bearing       |                   |                                                                  | PTFE / 304                 |                                         |             |  |  |  |  |
| Spring        |                   |                                                                  | 17-7PH / Inconel X750      |                                         |             |  |  |  |  |
| Stud          | A193-B7           | A193-B7M                                                         | A193-B8                    | A193-B8 / B8M                           | A320-L7     |  |  |  |  |
| Nut           | A194-2H           | A194-2HM                                                         | A194-8                     | A194-8 / 8M                             | A194-4      |  |  |  |  |
| NOTES:        |                   |                                                                  | •                          |                                         |             |  |  |  |  |

#### NOTES:

the valve can be accessed easily during maintenance, repair, and operation.

The ball valve can be flanged or welded to the pipeline. The customer can choose whether to connect the ends with either bolt (flanged) or with weld.

#### For Welded Connections

#### Note

Do not install the ball valve while welding pipe fittings or connections, or immediately after any welding activity within the pipelines.

The valve's body is coated with anti-corrosion material. Remove this material before welding.

When welding the valve to the pipe, make sure that the temperature of the sealing member inside the valve will not exceed 140°C / 284°F. The safe distance between the weld and the valve seat sealing is shown in Table 6.

Do not allow any welding slag or foreign particles to enter the valve during the welding process. This might clog the seat and can cause damage to the valve seat during operation.

<sup>1.</sup> All materials conform to ASTM specifications.

<sup>2.</sup> Materials above are general valve design standards. Other materials not listed above may be provided. Please contact your local business partner for availability.

<sup>1.</sup> All materials conform to ASTM specifications.

<sup>2.</sup> Materials above are general valve design standards. Other materials not listed above may be provided. Please contact your local business partner for availability.

**Table 3.**  $C_v$  Flow Coefficients

| BODY                                                                                                                                            | BODY SIZE |        | 01.000 | 01.000 |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--------|--------|--------|--|
| DN                                                                                                                                              | Inch      | CL150  | CL300  | CL600  |  |
| 80                                                                                                                                              | 3         | 1300   | 1100   | 1000   |  |
| 100                                                                                                                                             | 4         | 2300   | 2200   | 1800   |  |
| 150                                                                                                                                             | 6         | 5400   | 5400   | 4500   |  |
| 200                                                                                                                                             | 8         | 10000  | 10000  | 8900   |  |
| 250                                                                                                                                             | 10        | 17800  | 17100  | 14500  |  |
| 300                                                                                                                                             | 12        | 26000  | 25000  | 22000  |  |
| 350                                                                                                                                             | 14        | 32000  | 31000  | 28000  |  |
| 400                                                                                                                                             | 16        | 44000  | 42000  | 39000  |  |
| 450                                                                                                                                             | 18        | 58000  | 56000  | 51000  |  |
| 500                                                                                                                                             | 20        | 75000  | 72000  | 66000  |  |
| 600                                                                                                                                             | 24        | 111200 | 102000 | 92000  |  |
| NOTE: C <sub>v</sub> indicates the gallons of water at 16°C / 60°F flowing through the valve bore in 0.0069 MPa / 1 psig differential pressure. |           |        |        |        |  |

Table 4. Trunnion Mounted Ball Valve Torque

| BODY | BODY SIZE |        | TORQUE (N•m) |        |  |
|------|-----------|--------|--------------|--------|--|
| DN   | Inch      | CL150  | CL300        | CL600  |  |
| 80   | 3         | 120    | 210          | 360    |  |
| 100  | 4         | 180    | 330          | 600    |  |
| 150  | 6         | 400    | 680          | 1100   |  |
| 200  | 8         | 650    | 1100         | 2000   |  |
| 250  | 10        | 1100   | 1900         | 3600   |  |
| 300  | 12        | 1750   | 3000         | 5600   |  |
| 350  | 14        | 2500   | 4400         | 8000   |  |
| 400  | 16        | 3800   | 6200         | 11 000 |  |
| 450  | 18        | 5500   | 8000         | 18 000 |  |
| 500  | 20        | 7200   | 10 000       | 22 000 |  |
| 600  | 24        | 11 500 | 16 000       | 36 000 |  |

Table 5. Recommended Distance of the Weld Seam from the Valve Seal

| VALVE SIZE |         | DISTANCE TO WELD SEAM |        |  |
|------------|---------|-----------------------|--------|--|
| DN         | Inches  | mm                    | Inches |  |
| 80         | 3       | 50                    | 1.97   |  |
| 100 - 200  | 4 - 8   | 70                    | 2.76   |  |
| 250 - 400  | 10 - 16 | 90                    | 3.54   |  |
| >400       | >16     | 150                   | 5.91   |  |

# **WARNING**

Personal injury, equipment damage, or leakage due to escaping fluid may result if valve bolts are not tightened to proper load.

## For Flanged Connections

When installing the ball valve to the pipelines, tighten all the bolts evenly in a crisscross pattern.

## Commissioning

The ball valve has been commissioned at the factory. Confirm with your engineering division if secondary commissioning of the valve is necessary.

Hydraulic Pressure Test

# **WARNING**

The test pressure should not exceed 1.5 times of the rated or allowable operating pressure of the ball valve. However, do not exceed the maximum allowable pressure rating of the pipeline system or any equipment attached to it during Hydraulic Pressure Test.

#### **Note**

Use only clean water when performing hydraulic pressure test. Ensure that the pipeline system is free of foreign materials before the pressure test of the valve.

- Ensure that the ball valve is in the fully open position and the pipeline system and ball valve are clean.
- After filling the pipe with clean water, rotate the driving device clockwise to turn the ball valve to the closed position. Check for any leaks.
- 3. Slowly open the ball valve again to about 10 degrees by rotating the driving device counterclockwise. Through this, the pressure can evenly act on the valve seat. This will also protect the ball valve when test pressure exceeds the rated pressure of the valve.
- 4. After the hydraulic pressure test, turn the ball valve to the fully open position and empty out the water in the pipeline.

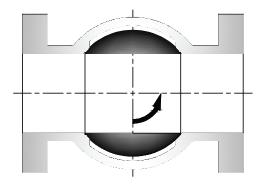
5. If the ball valve is equipped with test connection port, use this to drain the remaining water in the valve chamber. Open the test connection port then open the ball valve once or twice to ensure that all remaining water inside are drained. After draining, close the test connection port. If the ball valve is not equipped with test connection port, open the valve once or twice to ensure full drainage.

## **Startup**

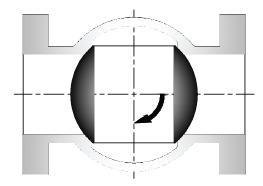
# **WARNING**

To avoid possible personal injury, equipment damage, or leakage due to escaping fluid, make certain the ball valve is installed as instructed in the Installation section.

# CAUTION


If the ball valve is equipped with test connection port, make sure that it is fully closed before pressurizing the valve.

#### Note


The valve is only intended to block or allow flow through the pipeline. The valve should only be used in either fully open or fully closed position. Do not use this valve to regulate flow by partially opening or partially closing the valve. The valve should not stay in a semi-open or semi-closed state for more than two minutes.

Do not use the ball valve in process conditions where the pressure, temperature, media and other technical conditions exceeds the limitations set by the valve's specification.

- Check that proper installation is completed and any downstream equipment has been properly adjusted.
- 2. Ensure that the pipeline system is free of foreign material before the startup.
- 3. Make sure that the ball valve is fully turned to the open position before allowing fluid to pass through the valve.



COUNTERCLOCKWISE ROTATION TO OPEN BALL VALVE



CLOCKWISE ROTATION TO CLOSE BALL VALVE

Figure 2. Ball Valve Opening and Closing Directions

## **Maintenance**

# **WARNING**

Personal injury, equipment damage, or leakage due to escaping fluid may result if seals are not properly lubricated or maintained. Due to normal part wear or damage that may occur from external sources, this ball valve should be inspected and maintained periodically. The frequency of inspection, maintenance, and replacement of parts depend upon the severity of service conditions or the requirements of local, state, and federal regulations.

Ball valves that have been disassembled for repair must be tested for proper operation before returning it to service. Only parts manufactured by Regulator Technologies should be used for repairing Tartarini™ ball valves.

Tartarini Trunnion Mounted Ball Valve does not need special care under normal condition. However, the following pointers help maximize the valve's life.

#### Note

In the repair/maintenance process, take appropriate protective measures, such as wearing protective clothing, oxygen masks, and gloves. Discharge the residual materials inside the valve body before doing repair or maintenance procedure. For electric, hydraulic or pneumatic valves, ensure that these lines are shut off before performing maintenance.

 Switch the ball valve from fully open to fully closed or vice versa 2 to 3 times during longer operations and return it back to its original position. This should be done for at least once a year and/or during overhauling of the pipelines.

#### Note

The valves in the pipeline can only be fully opened or fully closed when running. Prohibit to take the valve for regulating or be in a semi-open or semiclosed state for more than 2 minutes.

When the ball valve has been opened and closed in place, do not continue to operate forcibly to avoid damage to the valve or drive.

 Regularly check if the ball valve is set at the desired position whether fully open or fully closed. If the ball valve cannot be switched to either fully open or fully closed position, valve service is required. If the ball valve's driving device needs replacement, simply remove the drive from the body. It is not necessary to disassemble the whole valve.

- Do not use the valve stem or driving device to lift the ball valve. Do not use wrenches or any lever to operate the driving device of the valve.
- If the commodity conveyed in the pipeline contains residues and impurities, periodically discharge through the valve's drain. Water deposits for non-water service should also be drained out of the valve prior to winter season to avoid freezing.
- In order to avoid the dirt and residual substances to be carried downstream, set up a blow-off line in the valve's middle chamber to discharge the dirt and residues. If no blow-off line is installed, open the valve into half for discharging. Make sure that pipeline is under maintenance and there is no pressure on it when opening the valve and discharging the dirt.
- Regularly inject sealing grease into the valve stem to avoid from being stacked.
- The valve stem and connected parts should be cleaned regularly to ensure normal working condition. Refer to assembly or disassembly section when servicing valve parts.
- When repairing or maintaining the valve, open the relief valve and the drain plug to release the pressure in the middle chamber.
- After every operation, make sure to check valve parts for signs of wearing and corrosion especially the sealing surfaces or O-rings, seat, packing, and the body. Replace parts if necessary.
- For water or oil service it is recommended that inspection should be done every three months while for highly corrosive service, monthly inspection should be done.
- Lubricate valve body and moving parts annually.
- If the valve is equipped with driving device, conduct maintenance work as per maintenance instructions for driving device.
- Do not use the valve as a ladder or pedestal when reaching equipment located above the valve. Do not hang additional weight to the stem, drive or other related accessory of the valve.

## **Disassembly**



To avoid personal injury resulting from sudden release of pressure, isolate the ball valve from all pressure and cautiously release trapped pressure inside the valve chamber before attempting disassembly.

Ensure that the middle chamber of the valve is fully depressurized before dismantling or maintaining the valve. Pressure inside the pipe may be released, but the middle chamber may still have residual pressure. Open and then close the valve several times to ensure that the pressure in the valve is completely released.

If the media conveyed by the valve is toxic, inflammable, or explosive, make sure that there are no residual media left in the valve especially in the middle chamber. Flush the valve with water or the appropriate cleaning solvent to ensure the complete removal of the residual media. Open and then close the valve several times while flushing the valve.

Observe proper protective measures when dismantling the valve. If the media conveyed by the valve is toxic, inflammable, or explosive, always wear personal protective equipment to avoid any injury or accident. Keep the working site away from fire, sparks, or ignition especially if the media is combustible.

To disassemble the valve, start disassembling with the last part as outlined in the assembly section.

Place the dismantled parts on a soft mat. Do not allow it to have direct contact with the ground.

Mark the dismantled parts correctly to avoid confusion during the assembly. Do not drop or apply excessive force to the valve and its related parts to avoid damage or deformation of the components.

Store the dismantled parts in a safe and dry area if it will not be used for a long time in order to protect it and prevent the formation of rust.

# **Assembly**



Failure to properly follow the Assembly Instructions could result in ball valve damage, personal injury, and property

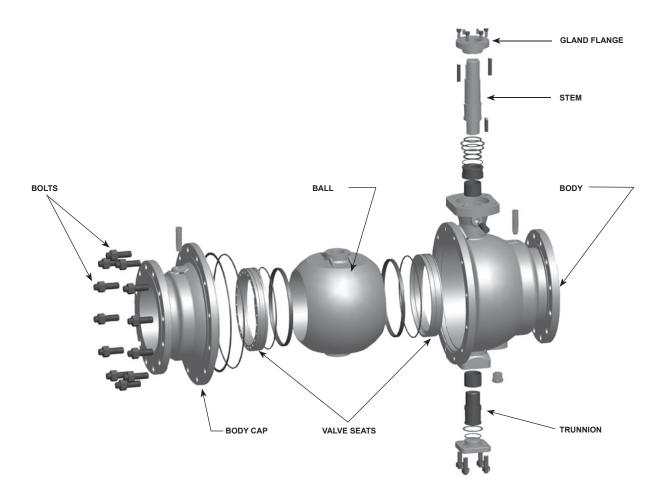



Figure 3. Exploded View of Tartarini™ Trunnion Mounted Ball Valve Assembly

damage due to escaping process fluid during testing, or after installing the ball valves in the pipe line.

#### Note

Before the performing the assembly work, clean all components of the ball valve and the working area. Ensure that there are no iron filings, rust, welding slag, and other debris inside the valve. Keep all valve parts and the working area clean all throughout the assembly process. The working area must be padded with any soft material or mat. Do not allow the valve body, its components, or any of its assembled parts to have direct contact with the ground.

Be careful with the lifting and moving of the ball valve's components. Excessive force applied to the assembly may damage or deform the valve, its related parts, and its components which may cause the ball valve to malfunction.

- Refer to the assembly drawing. Assemble the O-ring (key 8) and spring (key 9) into its corresponding location in the valve seat (key 6). Fit this assembly inside the valve body section (key 1). Also, assemble the other O-ring (key 8A) and spring (key 9A) into the other valve seat (key 6A) then fit this assembly into the body cap section (key 2). Place the remaining O-ring (key 10) and gasket (key 11) inside the cap section.
- Place the ball (key 3) inside the valve body section (key 1). Connect the assembled body cap section (key 2) into the valve body section and secure it with stud (key 28) and nut (key 29). Tighten the bolts with a torque as specified in Table 6.
- 3. Place the antistatic components (keys 12 and 12A) in their position located at the lower stem trunnion (key 5) and fit them into the bottom part of the

| THREA   |         | AD SIZE          | TOR     | TORQUE  |         | THREAD SIZE |             | TOR       | QUE       |
|---------|---------|------------------|---------|---------|---------|-------------|-------------|-----------|-----------|
| MAJOR D | IAMETER | THREADS PER INCH | ft•lbs  | Nome    | MAJOR D | IAMETER     | THREADS PER | ft•lbs    | N•m       |
| Inch    | mm      | - COARSE (UNC)   |         | N•m     | Inch    | mm          | INCH (UN)   | III•IDS   | N•III     |
| 1/2     | 12.7    | 13               | 37-44   | 50-60   | 1-1/4   | 31.8        | 8           | 590-738   | 850-1000  |
| 9/16    | 14.3    | 12               | 52-59   | 70-80   | 1-3/8   | 34.9        | 8           | 811-959   | 1100-1300 |
| 5/8     | 15.9    | 11               | 74-96   | 100-130 | 1-1/2   | 38.1        | 8           | 1033-1328 | 1400-1800 |
| 3/4     | 19.1    | 10               | 118-155 | 160-210 | 1-5/8   | 41.3        | 8           | 1328-1623 | 1800-2200 |
| 7/8     | 22.2    | 9                | 207-243 | 280-330 | 1-3/4   | 44.4        | 8           | 1623-1918 | 2200-2600 |
| 1       | 25.4    | 8                | 310-369 | 420-500 | 1-7/8   | 47.6        | 8           | 2065-2434 | 2800-3300 |
| 1-1/8   | 28.6    | 8 UN             | 369-443 | 500-600 | 2       | 50.8        | 8           | 2581-3098 | 3500-4200 |

Table 6. Recommended Torque Values for Tightening Flange Bolts

valve body (key 1). Make sure that head of the lower stem trunnion enters the hole underneath the ball (key 3) inside the valve body. Insert the stem bearing (key 13) into the lower stem trunnion and into the valve body.

- 4. Place the gasket (key 16) and O-ring (key 15) into the lower cover (key 7) then fit the lower cover into the bottom of the valve body (key 1). Secure this into the valve body with screw bolt (key 30) and screw nut (key 31) and tighten it.
- 5. Secure the key (key 26) into the keyway of the upper stem (key 4) and fit this into the top of the valve body (key 1). Make sure that its head is properly connected to the ball (key 3). Place the stem bearing (key 14) into the upper stem (key 4) and continuously into the valve body (key 1).
- Place the O-rings (keys 17 and 18) and backup ring (key 19) into the stem retainer (key 20). Fit the stem retainer into the head of the upper stem (key 4) and continuously into the top of the valve body (key 1).
- 7. Place the cut ring (key 21) into the upper stem (key 4) and continuously into the top of the valve body (key 1).
- 8. Insert the O-ring (key 18A), backup ring (key 19A), gasket (key 23), and packings (keys 22 and 22A) into the gland flange (key 24). Fit the gland flange into the head of the upper stem (key 4) and mount it on the top of the valve body (key 1). Secure it with stud bolts (key 32) and tighten.
- Insert the keys (keys 26, 26A, 27, and 27A) into the keyway of the upper stem (key 4). Place the driving device / operator (key 25) correctly into

- the top of the valve stem which should come in contact with the top of the valve body (key 1).
- 10. Use the bolt (key 33) and nut (key 34) to tighten the operator (key 25) and gland flange (key 24).
- 11. Screw the sealant fittings (keys 35, 35A, and 35B) and the drain plug (key 36) into their corresponding location in the valve bodies (keys 1 and 2) and tighten it.
- 12. Make the valve actuate once or twice by rotating the driving device to ensure the accuracy and reliability of the valve. Finally, rotate the valve at fully open position.

# **Parts Ordering**

When corresponding with your local Sales Office about this ball valve, always reference the equipment serial number found on the nameplate.

When ordering replacement parts, reference the key number of each part as found in the following parts list.

#### Note

Use only genuine Tartarini™ replacement parts. Components that are not supplied by Regulator Technologies should not, under any circumstances, be used in any Tartarini ball valves, because they will void your warranty, might adversely affect the performance of the ball valve, and could give rise to personal injury and property damage.

# **Troubleshooting Guide**

Table 7. Troubleshooting Guide

| PROBLEM                                               | POSSIBLE CAUSES                                                                                    | SOLUTION                                                                                                                                         |  |
|-------------------------------------------------------|----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                                                       | Gear and bearing defect                                                                            | Refer to disassembly section to access the bearing and check for any damage. Replace parts if necessary. Remove gear cover and check for damage. |  |
|                                                       | Low frequency of operation and/or lack of lubricating oil                                          | Lubricate the valve seat. Use appropriate and recommended industrial lubricating grease for the gear.                                            |  |
| The stem and driving device do not rotate.            | Frozen gear or valve                                                                               | Heat or inject anti-freeze solution to the gear.                                                                                                 |  |
|                                                       | Overtight packing                                                                                  | Loosen the stud that compresses the gland flange.                                                                                                |  |
|                                                       | Rough stem surface or dirt accumulation on the trim of the stem                                    | Refer to disassembly section to access the stem. Clean stem and add lubricant.                                                                   |  |
|                                                       | Bent or damaged stem                                                                               | Repair or replace the valve stem.                                                                                                                |  |
|                                                       | Loose studs and nuts                                                                               | Tighten nuts and studs. Torque, if necessary, according to recommended torque values.                                                            |  |
| Sealing surface is leaking.                           | Damaged sealing surface                                                                            | Replace the sealing materials (O-rings, gaskets, seats of the leaking part.                                                                      |  |
|                                                       | Clogged sealing surface with dirt                                                                  | Refer to disassembly section to access the sealing surfaces and flush the dirt.                                                                  |  |
|                                                       | Improper placing of the switch                                                                     | Place the switch in the proper position.                                                                                                         |  |
|                                                       | Uncompressed packing                                                                               | Recompress the packing evenly.                                                                                                                   |  |
|                                                       | Some missing packing                                                                               | Add more packing to suffice the required quantity.                                                                                               |  |
| Packing is leaking.                                   | Damaged packing                                                                                    | Replace the packing.                                                                                                                             |  |
|                                                       | Deformed stem, uneven stem roundness, or presence of scratches, groove, galling, and other defects | Replace stem.                                                                                                                                    |  |
|                                                       | Uneven bolt tightness                                                                              | Retighten the bolts evenly. Torque, if necessary, according to recommended torque values.                                                        |  |
| The middle flange is leaking.                         | Damaged gasket                                                                                     | Replace the gasket.                                                                                                                              |  |
|                                                       | Rough and uneven flange sealing surface                                                            | Smoothen the flange sealing surface.                                                                                                             |  |
| Valva is unable to sleep completely                   | Improper installation of the limit switch of gear                                                  | Reinstall the limit switch.                                                                                                                      |  |
| Valve is unable to close completely.                  | Inappropriate installation of the driving device                                                   | Reinstall the driving device in the proper position.                                                                                             |  |
| There is poor passage of the fluid to the valve body. | Improper alignment of the ball opening with the flow passage                                       | Adjust the ball to its proper position. Make sure that the valve stem is properly connected to the slot of the ball.                             |  |

Table 8. Approximate Weights, kg / lbs

| BODY SIZE |      | - CL         | 150         | CL300        |             | CL600         |               |
|-----------|------|--------------|-------------|--------------|-------------|---------------|---------------|
| DN Inch   | Inch | CL           | 150         |              | 300         |               | 600           |
| DN        |      | Forged Steel | Cast Steel  | Forged Steel | Cast Steel  | Forged Steel  | Cast Steel    |
| 80        | 3    | 25 / 55      | 22 / 49     | 33 / 73      | 30 / 66     | 65 / 143      | 55 / 121      |
| 100       | 4    | 38 / 84      | 35 / 77     | 59 / 130     | 55 / 121    | 110 / 243     | 102 / 225     |
| 150       | 6    | 78 / 172     | 74 / 163    | 125 / 276    | 118 / 260   | 245 / 540     | 232 / 511     |
| 200       | 8    | 210 / 463    | 205 / 452   | 270 / 595    | 255 / 562   | 430 / 948     | 390 / 860     |
| 250       | 10   | 340 / 750    | 322 / 710   | 390 / 860    | 370 / 816   | 760 / 1675    | 710 / 1565    |
| 300       | 12   | 480 / 1058   | 460 / 1014  | 560 / 1235   | 533 / 1175  | 1010 / 2227   | 960 / 2116    |
| 350       | 14   | 595 / 1312   | 576 / 1270  | 670 / 1477   | 640 / 1411  | 1850 / 4078   | 1700 / 3748   |
| 400       | 16   | 890 / 1962   | 864 / 1905  | 1080 / 2381  | 1030 / 2271 | 2100 / 4630   | 1970 / 4343   |
| 450       | 18   | 1350 / 2976  | 1280 / 2822 | 1610 / 3549  | 1542 / 3399 | 2980 / 6570   | 2150 / 4740   |
| 500       | 20   | 1680 / 3704  | 1600 / 3527 | 2210 / 4872  | 2100 / 4629 | 3360 / 7407   | 3250 / 7165   |
| 600       | 24   | 3650 / 8047  | 3540 / 7804 | 4435 / 9777  | 4200 / 9259 | 6000 / 13 228 | 5800 / 12 787 |

## **Parts List**

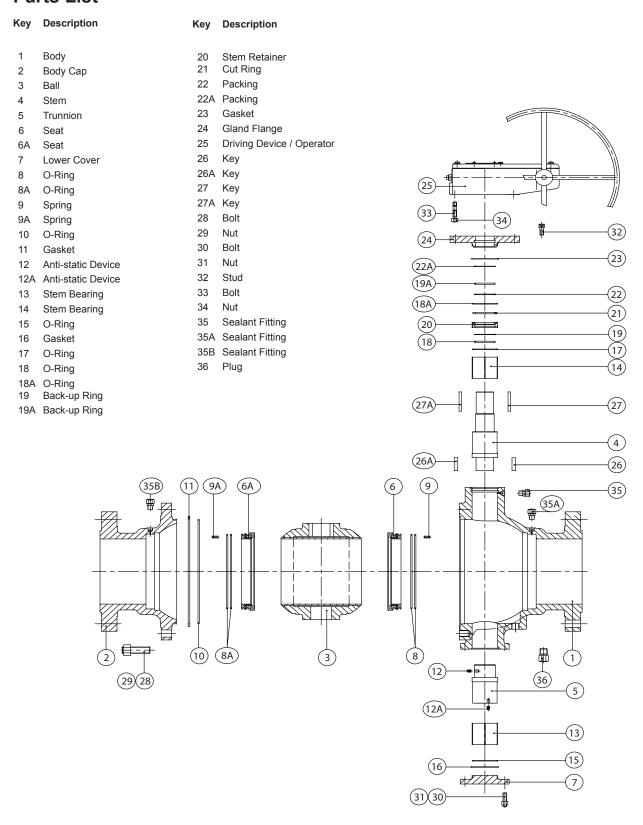



Figure 4. Tartarini™ Trunnion Mounted Ball Valve Assembly

#### **Industrial Regulators**

# **Emerson Process Management Regulator Technologies, Inc.**

USA - Headquarters McKinney, Texas 75069-1872, USA Tel: +1 800 558 5853 Outside U.S. +1 972 548 3574

Asia-Pacific Shanghai 201206, China Tel: +86 21 2892 9000

Europe

Bologna 40013, Italy Tel: +39 051 419 0611

Middle East and Africa Dubai, United Arab Emirates

Tel: +971 4811 8100

For further information visit www.tartarini-naturalgas.com

#### **Natural Gas Technologies**

# **Emerson Process Management Regulator Technologies, Inc.**

USA - Headquarters McKinney, Texas 75069-1872, USA Tel: +1 800 558 5853 Outside U.S. +1 972 548 3574

Asia-Pacific Singapore 128461, Singapore Tel: +65 6770 8337

Europe Bologna 40013, Italy Tel: +39 051 419 0611 Gallardon 28320, France Tel: +33 2 37 33 47 00

### **TESCOM**

# **Emerson Process Management Tescom Corporation**

USA - Headquarters Elk River, Minnesota 55330-2445, USA

Tels: +1 763 241 3238 +1 800 447 1250

Europe Selmsdorf 23923, Germany Tel: +49 38823 31 287

Asia-Pacific Shanghai 201206, China Tel: +86 21 2892 9499

The Emerson logo is a trademark and service mark of Emerson Electric Co. All other marks are the property of their prospective owners. Tartarini is a mark of O.M.T. Officina Meccanica Tartarini s.r.l., a business of Emerson Process Management.

The contents of this publication are presented for informational purposes only, and while every effort has been made to ensure their accuracy, they are not to be construed as warranties or guarantees, express or implied, regarding the products or services described herein or their use or applicability. We reserve the right to modify or improve the designs or specifications of such products at any time without notice.

Emerson Process Management does not assume responsibility for the selection, use or maintenance of any product. Responsibility for proper selection, use and maintenance of any Emerson Process Management product remains solely with the purchaser.

