HART[®] Field Device Specification Fisher[™] FIELDVUE[™] DLC3010 Digital Level Controller (Supported Product)

HART Revision	Device Type	Device Revision	Firmware Revision
HART 5	04	1	8

Contents

Tables Performance Annex A: Compatibility Checklist	$\begin{array}{c} 2\\ 2\\ 3\\ 3\\ 3\\ 4\\ 4\\ 4\\ 5\\ 5\\ 5\\ 5\\ 6\\ 7\\ 7\\ 8\\ 8\\ 18\\ 7\\ 38\\ 45\\ 48\end{array}$
Performance	
Annex B: Default Configuration Annex C DLC3010 Parameters as part of a	48
Rosemount [™] 1410/1420 <i>Wirel</i> essHART®	
Gateway	50

W7977-2

Product removed from sale April 2022

Introduction

Scope

The Fisher DLC3010 digital level controller targeted compliance with HART Protocol Revision 5.2. Additionally, an effort was made to provide support for the proposed revision 5/6 compatibility rules. This document provides all the device-specific features and HART communications protocol implementation details. The functionality of this field device is described sufficiently to allow its proper application in a process and its complete support in HART-capable host applications.

Purpose of this document

This document provides a description of the field device from a HART Communication perspective. Additional product information can be found in the DLC3010 product literature, available from your <u>Emerson sales office</u>.

Who should use this document

The information contained herein is intended for use as a technical reference for HART-capable host application developers, systems integrators, and knowledgeable end-users. It also provides functional specifications (e.g., commands, enumerations, and performance requirements) used during field device development, maintenance, and testing. Users of this document must be fully trained in HART Protocol requirements and terminology.

Abbreviations and definitions

Status information returned by Command 48
An 8-bit unsigned integer
A reference to a table in HCF_SPEC-183 (FCG TS20183) Common Tables Specification
Variables which represent nonvolatile values of manufacturing-initialized data or user-specified configuration information. These variables cannot be accessed via Universal or Common Practice Commands.
Uniquely defined data items within a field device, containing process-related information. They are assigned consecutive code numbers starting with zero.
DLC3010 digital level controller product
A Device Variable mapped to a slot in the set of HART commands that support potential analog channels in the device. Only the first slot is required to have an associated analog channel.
A pre-defined set of values or text
IEEE 754 floating point format
Highway Addressable Remote Transducer
Liquid Crystal Display Minimum supply voltage required at device terminals to guarantee correct behavior, (including HART communication), during both normal operation and while indicating a malfunction

NVM	Non-volatile memory
Packed	Packed ASCII, a special form of characters defined by HART in which four 6-bit ASCII characters are packed into three bytes
RTD	Resistance Temperature Detector
STO	Slave Time Out. The time allowed for a slave device to begin its transmission, defined in HCF_SPEC-081 (FCG TS20081) and tested in HCF_TEST-001 section 7.24 DLL024.
Word	A 16-bit unsigned integer
Uint <n></n>	Unsigned integer with bit length n

Reference Documentation

HART Smart Communications Protocol Specification Revision 5.0; a group of documents specifying the HART Communication Protocol, physical layers, and Data Link Layers as defined by the FieldComm Group[™].

FIELDVUE DLC3010 Digital Level Controller Instruction Manual, D102748X012

FIELDVUE DLC3010 Digital Level Controller Quick Start Guide, D103214X012

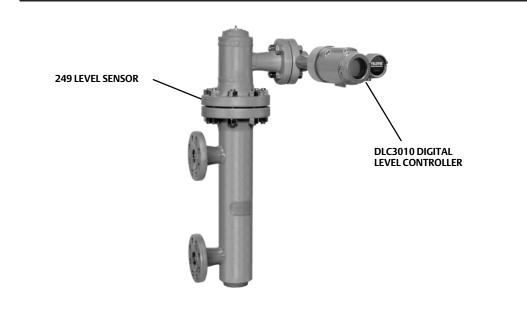
Industrial Platinum Resistance Thermometers and Platinum Temperature Sensors, IEC 60751, International Electrotechnical Commission

Manufacturer Name	Fisher Controls		Model Name(s)	DLC30	10	
Manufacture ID Code	19 (13 Hex)		Device Type Code	04	(04 Hex)	
HART Protocol Revision	5.2		Device Revision	1	1	
Number of Device Variables	5 (effectively 3, as v		ariables 0, 1 and 2 cannot co	exist)		
Physical Layers Supported	FSK (Bell 202 Currer		it)			
Physical Device Category	Transr	nitter (two-w	ire), Non-DC-isolated Bus De	vice		

Device Identification

Product Overview

DLC3010 digital level controllers are used with level sensors to measure liquid level, level of the interface between two liquids, or liquid specific gravity (density). Changes in level or specific gravity exert a buoyant force on a displacer, which rotates the torque tube shaft. This rotary motion is applied to the digital level controller, transformed to an electrical signal and digitized. The digital signal is compensated and processed per user configuration requirements, and converted to a 4-20 mA analog electrical signal. The resulting current output signal is sent to an indicating or final control element. The name plate is located on the top of the DLC3010 assembly and indicates the model name, individual product serial number, and any applicable third party approvals.


Product Interfaces

Process Interface

Primary Variable Sensor Interface

DLC3010 digital level controllers mount on a wide variety of caged and cageless 249 level sensors. Mounting adaptors are available to allow using them on other manufacturers' displacer type level sensors. The field device is provided with a lever that carries a set of magnets across a Hall-Effect sensor to transform angular position into voltage. The lever is coupled to the buoyancy sensor's pilot shaft by a clamping bolt and nut. Nominal design rotation of the buoyancy sensor for a full span change of water level at room temperature is 4.4°. To best utilize the accuracy of the transmitter, the amount of input rotation used should be close to this range. For applications that would develop a very small proportional band with standard hardware, (e.g., interface level measurements where the difference between the densities of the two phases is quite small), custom sensor configurations may be specified to improve the mechanical gain.

The available lever travel in the digital level controller is approximately $\pm 6^{\circ}$ from the neutral or 'locked' position. This allows right- or left-hand-mounted sensors to be used with out mechanical changes to the transmitter. It also allows the digital level controller to be used with sensors having mechanical gain slightly higher than nominal by physically coupling at the center of sensor travel instead of at the lowest process condition.

Process Temperature Interface

An external 100 Ohm Platinum RTD of 2-wire or 3-wire configuration may be installed to provide process temperature instrumentation. The terminals for the RTD are in the lower bank of the instrument terminal box, and are labeled "Rs", "R1", and "R2", from left to right. "Rs" and "R1" are used for the two wires from the same node of a 3-wire RTD, and must be shorted with a jumper when a two-wire RTD is employed. Refer to the Instruction Manual for additional installation details. When the RTD is installed, configured, and calibrated, and a table of density versus temperature is entered by the user, this input will be used to drive density compensation for the level calibration. If the RTD is not installed, the compensation tables can also be driven by a manually-entered value of process temperature. To disable the density temperature-compensation, the compensation table length is reduced to 1 element.

The process temperature value derived from the RTD may be checked against user-defined alarm thresholds to indicate when the sensor is operating outside of recommended temperature limits.

Electronics Temperature Interface

An internal temperature sensor mounted near the Hall Sensor is utilized to drive factory-configured temperature compensation for magnetic flux and Hall-effect sensitivity variations. It may also be checked against user-defined alarm thresholds to indicate when the transmitter is operating outside of recommended temperature limits.

Host interface

Analog Output: Primary Variable

When available terminal voltage is above the Lift-Off Voltage, the DLC3010 acts as the current source in a two-wire 4-to-20 mA current loop (in point-to-point mode) or draws 4 mA fixed current (in multi-drop mode). This output is provided in the DLC3010's terminal box at two terminals marked "+" and "-". Refer to the Quick Start Guide for connection details. In point-to-point mode, the digital value of the primary variable is mapped to the 4-20 mA signal by the Range Values.

	Direction	Value (% Range)	Value (mA or V)	
Saturation Limits	High	PV>+103.13%	20.5 mA	
Saturation Linits	Low	PV < -1.25%	3.8 mA	
Alarm Indication	High*		22.5 mA	
Alarminucation	Low*		3.7 mA	
Maximum Current	22.5 mA			
Multi-Drop Current Draw	Multi-Drop Current Draw 4.0 mA			
Lift-Off Voltage 12 V.				
* User must select one or the other of the alarm indication outputs with a hardware jumper. They are mutually exclusive.				

HART Digital Interface

When available terminal voltage is above the Lift-Off Voltage, the DLC3010 can communicate digitally via Bell 202 FSK HART protocol. This interface is available at test clips in the DLC3010's terminal box on the two terminals marked "+" and "-", or across any convenient impedance on the loop that is sufficient to meet the HART signaling requirements. Refer to the Quick Start Guide for connection details.

Local Interfaces, Jumpers, and Switches

Local Displays

A removable Liquid Crystal Display (LCD) assembly is provided. It displays PV %Range on a circular "bar-graph", and different combinations of digital information such as PV %Range, PV in engineering units, Process Temperature, etc. Display symbols or text are provided for:

- Write-lock (key symbol)
- Display numeric field overflow (OFLOW)
- Hardware failure (Hdwr FL)

Local Jumpers

A fail-mode jumper is provided on the lower face of the LCD assembly (on the upper right quadrant of the electronics module when the LCD is not used). This jumper is internal to the electronics compartment and may only be accessed by removing the main cover. It allows the user to select either the High or Low alarm indication documented in the table above. Only one alarm indication value can be made available during operation. The fault conditions that trigger the alarm are documented in table 2a.

Device Variables

These variables represent measurements taken by the device (see table 5), and are all in float format. Their values are not directly exposed by any standard HART command. However, they are the set of internal variables from which the Dynamic Variables are selected. Only one of the Liquid Level, Interface Level, or Liquid Density measurements may be computed in a given configuration, so assigning one of these to PV sets up the structure of the measurement algorithm. Temperature variable selections are permanently allocated to SV and TV slots, so their indices are used primarily for units processing. Process temperature is only functional as TV if the RTD is installed, otherwise it is a fixed parameter entered by the user.

Device Variable 0 - Liquid Level

When Liquid Level is assigned as PV, the process value is derived from the measured rotation of the sensor's torque tube by using calibration data to convert the change in rotation to a force measurement, then applying displacer weight, displacer volume, and fluid density configuration data to convert force to liquid level. This variable is not computed when it is not assigned as PV.

Device Variable 1 - Interface Level

When the Interface Level is assigned as PV, the process value is derived from the measured rotation of the sensor's torque tube by using calibration data to convert the change in rotation to a force measurement, then applying displacer weight, displacer volume, upper fluid density, and lower fluid density configuration data to convert force to interface level. This variable is not computed when it is not assigned as PV.

Device Variable 2 – Liquid Density

When the Liquid Density is assigned as PV, the process value is derived from the measured rotation of the sensor's torque tube by by using calibration data to convert the change in rotation to a force measurement, then applying weight and volume configuration data to convert force to fluid density. This variable is not computed when it is not assigned as PV.

Device Variable 3 – Process Temperature

When an RTD installed in the process fluid is wired to the device and assigned as the Process Temperature Source, the Process Temperature variable is derived from the measured resistance of the RTD via a table related to IEC 60751. A 60-second lag, factory calibration, and user offset adjustments are applied to the signal before reporting.

When "Manual Entry" is assigned as the Process Temperature Source, this variable simply reports a fixed user-entered value.

Device Variable 4 – Electronics Temperature

This variable is derived from the voltage drop across a semiconductor junction in a chip mounted in the transducer housing. A 60-second lag and factory or user offset adjustments are applied to the signal before reporting.

Dynamic Variables

Three Dynamic Variables are implemented. The PV is user-selectable to one of the first three Device Variables via Command 51.

	Default Meaning	Units
PV*	Liquid Level	See table 6
SV	Instrument Temperature	See table 6
TV	Process Temperature	See table 6
FV	Not Used	N/A
* User selectable		

Status Information

Device Status

The Field Device Status Byte (see table 2a) is the only status byte defined in the HART 5 protocol. The order and meaning of each of the eight bits within the byte are fixed by the protocol. This byte is one of the status bytes included with each HART response. It is not part of the Command 48 data.

Extended Device Status

This byte was not defined in the HART 5 specification, so it is not supported.

Additional Status Integrity Bytes

Three Additional Status bytes providing details of internal monitor states are returned in the Command 48 response. Refer to table 2b for definitions of the bits.

Universal Commands

The following HART 5.0 Universal Commands are implemented in the DLC3010 firmware:

Command 0: Read Unique HART Identifier Command 1: Read Primary Variable Command 2: Read PV Current and Percent Range Command 3: Read Dynamic Variables and PV Current Command 6: Write Polling Address Command 11: Read Unique Identifier with Tag Command 12: Read Message Command 13: Read Tag, Descriptor, Date Command 14: Read PV Sensor Info Command 15: Read PV Output Info Command 16: Read Final Assembly Number Command 17: Write Message

Command 18: WriteTag, Descriptor, Date

Note

At HART 5, Commands 38 and 48 were in the Common Practice group.

Any command can return any of the following response codes:

- 0 No command specific errors
- 5 Incorrect Byte Count
- 8 Warning value written was truncated (write commands only)
- 32 Busy

In addition, some commands may return additional error codes. See the "Command Specific Response Codes" part of the command description for additional codes. One of the error codes associated with writing data to the instrument is:

7 In Write Protect Mode

A more complete list is available in table 1. All commands will check for the required number of data bytes and return Incorrect Byte Count if too few bytes are received. If too many bytes are received for the given command, the extra bytes are ignored. This is the behavior defined by the HART specification, which allows for command expansion with backward compatibility. If additional bytes are added to any command, an older instrument will still accept the command with only the original bytes used and will ignore any of the additional bytes.

Command 0: Read Unique Identifier

Returns identity information about the field device in HART 5 identity format, including: Device Type, revision levels, and Device ID. This command is implemented by a field device in both Short and Long Frame Formats. Command 0 is the only command that may respond to a short frame address. The Device Type Code will be returned in the expanded three-byte format. ("254", Manufacturer Identification Code, Manufacturer's Device Type Code). The combination of Manufacturer Identification Code, Manufacturer's Device Identification Code make up the Unique Identifier required for the Extended Frame Format of the Data Link Layer.

	Byte	Format	Description	Returned Value
Request Data bytes	None			
	0	Enum	Expansion code "254"	254
	1	Enum	Manufacturer Identification code [Common Table 8]	19
	2	Enum	Manufacturer's Device Type code [Common Table 1]	4
	3	Uint8	Number of preambles required for master to slave request, including those required for message detection	5
	4	Uint8	Revision level of the universal command document implemented by this device. Levels 254 and 255 are reserved.	5
	5	Uint8	Revision level of the device - specific document implemented. Levels 254 and 255 are reserved	1
	6	Uint8	Software revision level of this device	8
	7.7-7.3	Uint5	Hardware revision level. Does not necessarily trace component changes	1
	7.2-7.0	Enum	Physical Signaling Code [Common Table 10]	0
	8	Bits	Flags [Common Table 11]	0
	9-11	Uint24	(Unique) Device Identification Number	
	Code	Class	Description	
Response Codes	6	Error	Device-Specific Command Error	

Command 1: Read Primary Variable

The Primary Variable is returned along with its Units Code.

	Byte	Format	Description
Request Data Bytes	None		
Response	0	Enum	Primary Variable Units (table 6, DLC3010 Unit Codes)
Data Bytes	1-4	Float	Primary Variable
	Code	Class	Description
	6	Error	Device-Specific Command Error
Response Codes	8	Warning	Update Failure
	16	Error	Access Restricted

Command 2: Read Loop Current and Percent of Range

The Loop Current should match the current that would be measured by a milliammeter in series with the field device. The actual implementation reports the commanded value driving the output Digital to Analog converter.

The Percent of Range signal follows the PV as mapped by URV and LRV in normal operation. However, the value reported by Command 2 in the DLC3010 at firmware 8 is derived from the current command, thus reflecting saturation limits and alarm values, instead of following PV out to Sensor Limits.

	Byte	Format	Description	Returned Value
Request Data Bytes	None			
Response Data Bytes	0-3	Float	Primary Variable Loop Current (milliamperes)	
Data Bytes	4-7	Float	Primary Variable Percent of Range (%)	
	Code	Class	Description	
Response	6	Error	Device-Specific Command Error	
Codes	8	Warning	Update Failure	

Command 3: Read Dynamic Variables and Loop Current

The Loop Current should match the current that would be measured by a milliammeter in series with the field device. The actual implementation reports the commanded value driving the output Digital to Analog converter.

The remaining Response Data include the PV with its Units Code, Process Temperature and Electronics Temperature with Temperature Units Codes.

	Byte	Format	Description	Returned Value
Request Data Bytes	None			
	0-3	Float	Primary Variable Loop Current (mA)	
	4	Enum	Primary Variable Units Code (table 6)	
	5-8	Float	Primary Variable	
	9	Enum	Secondary Variable Units Code (table 6)	
Response Data Bytes	10-13	Float	Secondary Variable (Electronics Temperature)	
	14	Enum	Tertiary Variable Units Code (table 6)	
	15-18	Float	Tertiary Variable (Process Temperature)	
	19	Enum	Not Used	250
	20-23	Float	Not Computed	NaN
	Code	Class	Description	
Response	6	Error	Device-Specific Command Error	
Codes	8	Warning	Update Failure	

Command 6: Write Polling Address

This is a Data Link Layer Management Command.

This command writes the Polling Address to the field device. The address is used to control the Primary Variable Analog Output and provide a means of device identification in Multidrop installations.

The Primary Variable Analog Output responds to the applied process only when the Polling Address of the device is set to 0. When the address assigned to a device is in the range from 1 through 15, the Analog Output is Not Active and does not respond to the applied process. While the Analog Output is Not Active, the Analog Output is set to its minimum; the Transmitter Status Bit #3, Primary Variable Analog Output Fixed, is set; and the Upscale/Downscale Alarm is disabled. If the Polling Address is changed back to 0, the Primary Variable Analog Output will become Active and respond to the applied process.

In the HART 5 specification, no Read Command was provided for Polling Address. A Device-Specific Command is used to acquire its value for display in the interface.

	Byte	Format	Description		
	0	Uint8	Polling Address		
Request Data			0 Analog Output Active		
bytes			1 – 15 Analog Output Not Active		
			16 - 255 Invalid		
	0	Uint8	Polling Address		
Response			0 Analog Output Active		
Data Bytes			1 – 15 Analog Output Not Active		
			16 - 255 Invalid		
	Code	Class	Description		
	2	Error	Invalid Selection		
Response	5	Error	Too Few Data Bytes Received		
Codes	6	Error	Device-Specific Command Error		
	7	Error	In Write-Protect Mode		

Command 11: Read Unique Identifier Associated with Tag

This command returns the Expanded Device Type code, revision levels, and Device Identification Number from a device containing the requested Tag. This command is unique in that no response will be made unless the Tag matches that of the device.

The Device Type Code will always be returned in expanded 3-byte format: "254", Manufacturer Identification Code, Manufacturer's Device Type code.

	Byte	Format	Description	Returned Value
Request Data bytes	0-5	Packed	Tag	
	0	Enum	Device Type Code for Expansion	254
	1	Enum	Manufacturer Identification Code	19
	2	Enum	Device Type Code	4
	3	Uint8	Number of Preambles required for request from Master to Slave, including those required for message detect	5
	4	Uint8	Revision Level of the Universal Command Specification implemented by this device	5
Response Data Bytes	5	Uint8	Revision level of the device - specific document implemented.	1
	6	Uint8	Software revision level of this device	8
	7.7-7.3	Uint5	Hardware revision level. Does not necessarily trace component changes	1
	7.2-7.0	Enum3	Physical Signaling Code [Common Table 10]	0
	8	Bits	Flags [Common Table 11]	0
	9-11	Uint24	Device Identification Number	
	Code	Class	Description	
Response	6	Error	Device-Specific Command Error	
Codes				

Command 12: Read Message

This command reads a user-defined message contained within the device.

	Byte	Format	Description
Request Data bytes	None		
Response Data Bytes	0-23	Packed	Message String
	Code	Class	Description
Response	6	Error	Device-Specific Command Error
Codes			

Command 13: Read Tag, Descriptor, Date

This command reads the tag, descriptor, and date contained within the device.

	Byte	Format	Description
Request Data bytes	None		
	0-5	Packed	Tag
Response	6-17	Packed	Descriptor
Data Bytes	18-20	Uint8[3]	Date; Respectively: day, month, year – base year (1900)
	Code	Class	Description
Response	6	Error	Device-Specific Command Error
Codes			

Command 14: Read Primary Variable Sensor Information

Reads the Primary Variable Sensor Serial Number, Primary Variable Sensor Limits/Minimum Span Units Code, Primary Variable Upper Sensor Limit, Primary Variable Lower Sensor Limit, and Primary Variable Minimum Span for the sensor. The Primary Variable Sensor Limits and Minimum Span Units will be the same as the Primary Variable Units.

Note

The sensor serial number is not applicable to the DLC3010 and is set to "0".

3 bytes (2²4 = 16,777,216) were insufficient to code Fisher serial numbers, which have passed the 17,000,000 mark, and may also contain non-numeric elements. We have created a device-specific variable to hold the displacer serial number

	Byte	Format	Description	Returned Value
Request Data bytes	None			
	0-2	Uint24	Not used in DLC3010 - Sensor Serial Number	000000
	3	Enum	Sensor Limits and Minimum Span Units Code	From Cmd 44
	4-7	Float	Upper Sensor Limit	Level Offset plus 120% of displacer length, or a density of 1.5 SGU
Response Data Bytes	8-11	Float	Lower Sensor Limit	Level Offset minus 20% of displacer length, or a density of 0.1 SGU
Data bytes	12-15	Float	Minimum Span	Closest usable spacing between upper/lower range values before accuracy issues need to be considered, 25% of displacer length or a density difference of 0.25 SGU.
	Code	Class	Description	
Response	6	Error	Device-Specific Command Error	
Codes				

Command 15: Read Primary Variable Output Information

This command reads the Instrument alarm selection code (condition of the hardware jumper), units code for the PV range variables, upper and lower range values, PV damping value, and private label distributor code. This command has the HART 5 structure, 1 byte shorter than the HART 7 version.

	Byte	Format	Description	
Request Data bytes	None			
	0	Enum	Hardware Alarm Selection Code (Ignore) ⁽¹⁾	
	1	Enum	PV Transfer Function Code ⁽²⁾	
	2	Enum	PV Upper and Lower Range Value Units Code, refer to table 6.	
Posponso	3-6	Float	PV Upper Range Value	
Response Data Bytes	7-10	Float	PV Lower Range Value	
	11-14	Float	PV Damping Value (units of seconds)	
	15	Enum	Write Protect Code (0=Not Protected, 1=Protected)	
	16	Enum	Private Label Distributor Code, refer to table 3	
	Code	Class	Description	
Response Codes	6	Error	Device-Specific Command Error	
1. The enumeration assignments for Alarm Selection Code in the DLC3010 do not comply with the definition in HCF_SPEC-183 Common Tables Specification, Table 6. Therefore, it is not referenced in DD menus, and the associated data item is handled by a device-specific command and variable. 2. The value of Transfer Function Code in the DLC3010 was inadvertently hard-coded to '1' during development. The DD uses a post-read action to reset it				

to the correct value of '0', but it must be ignored when accessed outside of the DD.

Command 16: Read Final Assembly Number

This command reads a 24-bit user-defined identification number from the device.

	Byte	Format	Description
Request Data bytes	None		
Response Data Bytes	0-2	Uint24	Final Assembly Number
	Code	Class	Description
Response	6	Error	Device-Specific Command Error
Codes			

Command 17: Write Message

This command allows you to write a 24-character informational message into the device.

	Byte	Format	Description
Request Data bytes	0-23	Packed	Message string
Response Data Bytes	0-23	Packed	Message String
	Code	Class	Description
Description	5	Error	Too few data bytes
Response Codes	6	Error	Device Specific command error
	7	Error	In write protect mode

Command 18: Write Tag, Descriptor, Date

This command writes the tag, descriptor, and date into the device.

	Byte	Format	Description
	0-5	Packed	Tag
Request	6-17	Packed	Descriptor
Data bytes	18-20	Uint8[3]	Date; Respectively: day, month, year – base year (1900)
	0-5	Packed	Tag
Response	6-17	Packed	Descriptor
Data Bytes	18-20	Uint8[3]	Date; Respectively: day, month, year – base year (1900)
	Code	Class	Description
Deenenee	5	Error	Too few data bytes
Response Codes	6	Error	Device Specific command error
coucs	7	Error	In write protect mode

Command 19: Write Final Assembly Number

This command writes the user-defined final assembly number into the device.

	Byte	Format	Description
Request Data bytes	0-2	Uint24	Final Assembly Number
Response Data Bytes	0-2	Uint24	Final Assembly Number
	Code	Class	Description
Response Codes	5	Error	Too few data bytes
	6	Error	Device Specific command error
	7	Error	In write protect mode

Common-Practice Commands

The DLC3010 field device supports the following common practice commands:

Command 34: Write Primary Variable Damping Value Command 35: Write Primary Variable Range Values Command 36: Set Primary Variable Upper Range Value Command 37: Set Primary Variable Lower Range Value Command 38: Reset Configuration Change Flag Command 40: Enter/Exit Fixed Current Mode Command 41: Perform Transmitter Self Test Command 42: Perform Master Reset Command 44: Write PV Units Code Command 45: Trim PV Current DAC Zero Command 46: Trim PV Current DAC Gain Command 48: Read Additional Transmitter Status Command 50: Read Dynamic Variable Assignments Command 51: Write Dynamic Variable Assignments Command 53: Set Device Variable Units Command 59: Write Number of Response Preambles

Burst Mode

This field device supports Burst Mode and the following commands:

Command 108: Write Burst Mode Command Number Command 109: Burst Mode Control

Catch Device Variable

This field device does not support Catch Device Variable.

Command 34: Write Primary Variable Damping Value

Allowable choices Byte Format Description **Request Data** 0-3 Damping Value for Primary Variable 0 to 16 seconds Float **Bytes** Response 0-3 Float Damping Value for Primary Variable Data Bytes Class Code Description Error Passed parameter too large 3 4 Error Passed parameter too small Response 5 Error Too few data bytes received Codes 7 Error In Write Protect mode 8 Warning Set to nearest possible value

Writes the damping value applied to the PV filter, in seconds. This term sets the time constant of the digital filter.

Command 35: Write Primary Variable Range Values

This command writes the primary variable ranging values with the associated units code. The Upper Range Value may be set lower than the Lower Range Value to implement reverse action for the analog output. Changing action via Command 35 is more robust than attempting to use Commands 36 and 37 iteratively for that purpose.

The unit code supplied in this command is not stored in the instrument. The supplied ranges will be converted to current PV units before being applied. Range values must be validated in the DD to assure that they are within the allowable limits and are separated by a minimum span. The unit code is checked in the instrument and Invalid Selection will be returned for a code that is not supported by the device in the current operating mode.

	Byte	Format	Description
	0	Uint8	Upper and Lower Range Values Unit Code
Request Data	1-4	Float	Primary Variable Upper Range Value
Bytes	5 - 8	Float	Primary Variable Lower Range Value
	0	Uint8	Upper and Lower Range Values Unit Code
Response	1-4	Float	Primary Variable Upper Range Value
Data Bytes	5 - 8	Float	Primary Variable Lower Range Value
	Code	Class	Description
	2	Error	Invalid selection
	9	Error	Lower Range too high
Response	10	Error	Lower Range too low
Codes	11	Error	Upper Range too high
	12	Error	Upper Range too low
-	14	Warning	Span is too small (Data is accepted)

Command 36: Set Primary Variable Upper Range Value

The value of the process applied to the process variable becomes the primary variable upper range value. The lower range value remains the same.

	Byte	Format	Description
Request Data Bytes	None		
Response Data Bytes	None		
	Code	Class	Description
	7	Error	In Write Protect mode
Response Codes	9	Error	Applied process too high
	10	Error	Applied process too low
	14	Warning	Span is too small (Data is accepted)

Command 37: Set Primary Variable Lower Range Value

The value of the process applied to the process variable becomes the primary variable lower range value. To maintain the same span, the device will attempt to shift the upper range value by the same amount that the lower range value changes.

	Byte	Format	Description
Request Data Bytes	None		
Response Data Bytes	None		
	Code	Class	Description
	7	Error	In Write Protect mode
	9	Error	Applied process too high
Response	10	Error	Applied process too low
Codes	14	Warning	New Lower Range Value pushed Upper Range Value over limit. Data is accepted in instrument. The Upper Range Value will be clamped at the sensor limit.
Note: Response Coc	les 9 and 10 wil	l take precedence	if the new span between LRV and URV is less than the minimum span given by command 15.

Command 38: Reset Configuration Change Flag

Resets the configuration changed flag associated with the requesting master¹ in the device status byte. Masters should issue this command after the configuration change has been detected and all needed configuration data has been read from the device.

	Byte	Format	Description	
Request Data Bytes	None			
Response Data Bytes	None			
	Code	Class	Description	
	None		Note: The HART specification provides response code 7 (In Write protect	
Response			mode), but blocking the reset action just because the device is	
Codes			write-protected would defeat the general principle behind the mechanism	
			implemented by this command	
configuration, and e	1 The standard now requires that 2 copies of this flag be maintained, one for each type of master. Both copies must be set for any change that affect configuration, and each type of master may only reset its own copy. It must be the responsibility of the host to decide when the flag copy can be cleared, and to make sure it does get cleared.			

Command 40: Enter/Exit Fixed PV Current Mode

The device is placed in the Fixed Primary Variable Current Mode with the PV current set to the value received. A commanded level of '0' forces exit from the Fixed PV Current Mode. This mode is also cleared when power is removed from the device. Value sent is in mA. Range checking is performed in the instrument (3.7 mA to 22.5 mA). The current command will be clamped to these limits if the request violates them.

	Byte	Format	Description
Request Data bytes	0-3	Float	Current Value (in mA) requested for Fixed Current Mode
Response Data Bytes	0-3	Float	Applied PV Current command (in mA)
	Code	Class	Description
Response Codes	14	Error	In Multi-Drop Mode

Command 41: Perform Transmitter Self Test

This command is reserved for factory testing only.

Command 42: Perform Master Reset

Respond immediately and then reset the microprocessor. This is equivalent to a power cycle in the DLC3010.

	Byte	Format	Description
Request Data bytes	None		
Response Data Bytes	None		
	Code	Class	Description
Response Codes	None		

Command 44: Write Primary Variable Units

This command is used to change the units of the Primary Variable. Range checking is performed in the instrument.

	Byte	Format	Description
Request Data Bytes	0	Uint8	Primary Variable Units Code
Response Data Bytes	0	Uint8	Primary Variable Units Code
	Code	Class	Description
Response Codes	2	Error	Invalid selection
	5	Error	Too few data bytes received
	7	Error	In Write Protect mode

Command 45: Trim Primary Variable Current DAC Zero

Trim the zero of the analog output so that the commanded signal current is accurately produced. This trim is typically performed using the Fixed Current Mode by adjusting the associated DAC output to 4.0 mA as observed on a precision meter. Reasonableness range checking must be done in the DD.

	Byte	Format	Description
Request Data Bytes	0-3	Float	Externally measured current level (mA)
Response Data Bytes	0-3	Float	Instrument current level (mA)
	Code	Class	Description
	3	Error	Passed parameter too large
	4	Error	Passed parameter too small
Response	5	Error	Too few data bytes received
Codes	7	Error	In Write Protect mode
	9	Error	Not in proper current mode
	11	Error	In Multidrop mode

Command 46: Trim Primary Variable Current DAC Gain

Trim the gain of the analog output so that the commanded signal current is accurately produced. This trim is typically performed using the Fixed Current Mode by adjusting the associated DAC output to 20.0 mA as observed on a precision meter. Reasonableness range checking must be done in the DD.

	Byte	Format	Description
Request Data Bytes	0-3	Float	Externally measured current level (mA)
Response Data Bytes	0-3	Float	Instrument current level (mA)
	Code	Class	Description
	3	Error	Passed parameter too large
	4	Error	Passed parameter too small
Response	5	Error	Too few data bytes received
Codes	7	Error	In Write Protect mode
	9	Error	Not in proper current mode
	11	Error	In Multidrop mode

Command 48: Read Additional Status

Returns status information which is not included in the response code bytes. The free time alarm bit will be cleared by this read action. Command 48 returns 3 bytes of data (see table 2b).

	Byte	Format	Description
Request Data bytes	None		
_	0	Uint8	Command 48 Response Byte 0
Response Data Bytes	1	Uint8	Command 48 Response Byte 1
2 4 4 2 9 4 6 5	2	Uint8	Command 48 Response Byte 2
	Code	Class	Description
Response	None		
Codes			

Command 50: Read Dynamic Variable Assignments

This command command reads the variable assigned to the primary variable, namely: Level, Interface, or Density, plus the fixed assignments. Number of variables matches the HART spec, even though only three variables are read from the instrument.

	Byte	Format	Description
Request Data Bytes	None		
	0	Enum	ID of variable returned as the first variable (PV) in Command 3, see table 5
	1	Enum	ID of variable returned as the second variable (SV) in Command 3, see table 5 Fixed at Electronics Temperature
Response Data Bytes	2	Enum	ID of variable returned as the third variable (TV) in Command 3, see table 5 Fixed at Process Temperature
	3	Enum	Code for Unused (250 decimal)
	Code	Class	Description
Response Codes	None		

Command 51: Write Dynamic Variable Assignments

This command assigns the variable to be used as the primary variable: Level, Interface, or Density. It writes only a single variable, not the 4 variables defined in the HART specification. The instrument performs validity checking. Parameters 2, 3, and 4 are not writable and will return what the instrument is using. Note: The instrument may need to be reconfigured to get valid PV units and upper and lower range values after changing the primary variable. Therefore, this command should only be issued from a method that takes care of such clean up.

	Byte	Format	Description
	0	Enum	Device variable ID assigned to PV, see table 5
Poquest Data	1	Enum	Unused and Ignored by instrument
Request Data Bytes	2	Enum	Unused and Ignored by instrument
bytes	3	Enum	Unused and Ignored by instrument
	0	Enum	Device variable ID assigned to PV
	1	Enum	Device variable ID assigned to SV
Response Data			Electronics Temperature code from table 5.
Bytes	2	Enum	Device variable ID assigned to TV
Dytes		Lindin	Process Temperature code from table 5.
	3	Enum	Code for Unused (250 decimal)
	Code	Class	Description
Response	2	Error	Invalid selection
Codes	7	Error	In Write Protect Mode

Command 53: Set Device Variable Units

This command writes the units associated with the specified parameter. Range checking is performed in the instrument. Note: Process temperature and electronics temperature share the same unit code so writing new units to one will change the units for the other.

	Byte	Format	Description	Allowable choices
Request Data	0	Enum	Device Variable ID	See table 5
Bytes	1	Enum	Units Code	See table 6
Response Data	0	Enum	Device Variable ID	
Bytes	1	Enum	Units Code	
	Code	Class	Description	
	5	Error	Too few data bytes received	
Response Codes	7	Error	In Write Protect mode	
	11	Error	Invalid Variable ID	
	12	Error	Invalid units code	

Command 59: Write Number of Response Preambles

This This is a Data Link Layer Management Command. This command selects the number of preambles to be sent by a device before the start of a response packet. The instrument range checks this value from 5-20. It stores and reads this value from NVM, but will use a RAM copy with a minimum value of 5 no matter what it reads from NVM.

	Byte	Format	Description	Allowable choices
Request Data Bytes	0	Uint8	Number of preambles to be sent prior to the response message from the DLC3010 slave to the Master	5-20
Response Data Bytes	0	Uint8	Number of preambles to be sent prior to the response message from the DLC3010 slave to the Master	
	Code	Class	Description	•
	3	Error	Passed parameter is too large	
Response	4	Error	Passed parameter is too small	
Codes	5	Error	Too few data bytes received	
	7	Error	In Write Protect mode	

Command 108: Write Burst Command Number

This command is used to select the response command the device transmits while in Burst Mode. HART 5 did not provide a Read Command for Burst Command Number, so a Device-Specific Command is used to access the value for display.

	Byte	Format	Description
Request Data Bytes	0	Enum	Burst Command Number (1, 2, or 3)
Response Data Bytes	0	Enum	Burst Command Number (1, 2, or 3)
	Code	Class	Description
Response Codes	2	Error	Invalid Selection
Response codes			

Command 109: Write Burst Mode Control

This command is used to enter and exit Burst Mode. HART 5 did not provide a Read Command for Burst Mode, so a Device-Specific Command is used to access the value for display.

	Byte	Format	Description
Request Data Bytes	0	Enum	Burst Mode (0 = Off, 1= On)
Response Data Bytes	0	Enum	Burst Mode
	Code	Class	Description
Response Codes	2	Error	Invalid Selection

Device-Specific Commands

The DLC3010 field device supports the following Device-Specific HART Commands.

Command 128: Read Float Variables with Selectable Units Command 129: Write Float Variables with Selectable Units Command 130: Read Float Variables with Fixed Units Command 131: Write Float Variables with Fixed Units Command 132: Read Byte Variables Command 133: Write Byte Variables Command 134: Read NVM (private) Command 135: Write NVM (private) Command 137: Read Word Variables Command 138: Write Word Variables Command 139: Read Displacer Serial Number Command 140: Write Displacer Serial Number Command 142: Read Table Entry Command 143: Write Table Entry Command 144: Read Trend Buffer Command 145: Read Device Variable Alert Params Command 146: Write Hi Alert Command 147: Write Hi Hi Alert Command 148: Write Lo Alert Command 149: Write Lo Lo Alert Command 150: Read NVM Count Remaining Command 151: Capture Zero Reference Angle Command 152: Set Write Lock

Command 128: Read Float Variables with Selectable Units

	Byte	Format	Description
Request Data Bytes	0	Enum	Variable Index Number from table 7
Base and Data	0	Enum	Variable Index Number from table 7
Response Data Bytes	1	Enum	Units Code. See table 6
bytes	2-5	Float	Value of Selected Variable in Associated Units
	Code	Class	Description
Response Codes	2	Error	Invalid Selection
	5	Error	Too few data bytes received

This command is used to read a floating-point variable and its associated units code.

Command 129: Write Float Variables with Selectable Units

This command is used to write the value of a floating-point variable in its associated units code. The instrument will convert the value from the presented units to standard internal units before storing it in NVM. The unit code is not stored. Range checking must be performed in the DD.

	Byte	Format	Description
De sus et De te	0	Enum	Variable Index Number from table 7
Request Data Bytes	1	Enum	Units Code, see table 6
bytes	2-5	Float	Value of Selected Variable in Associated Units
	0	Enum	Variable Index Number
Response Data Bytes	1	Enum	Units Code
Dytes	2-5	Float	Value of Selected Variable in Associated Units
	Code	Class	Description
	2	Error	Invalid Selection (Units Code)
	3	Error	Passed parameter is too large
Response Codes	4	Error	Passed parameter is too small
Response Codes	5	Error	Too few data bytes received
	7	Error	In Write Protect mode
	15	Error	Invalid Index (Variable)

Command 130: Read Float Variables with Fixed Units

This command is used to read a floating-point variable without any associated units code. The DD must check for invalid selections.

	Byte	Format	Description
Request Data Bytes	0	Enum	Variable Index Number from table 8
Response Data	0	Enum	Variable Index Number from table 8
Bytes	1-4	Float	Value of Selected Variable.
	Code	Class	Description
Response Codes	2	Error	Invalid Selection
	5	Error	Too few data bytes received

Command 131: Write Float Variables with Fixed Units

This command is used to write the value of a floating-point variable without any associated units code. Range checking must be performed in the DD.

	Byte	Format	Description
Request Data	0	Enum	Variable Index Number from table 8
Bytes	1-4	Float	Value of Selected Variable
Response Data	0	Enum	Variable Index Number from table 8
Bytes	1-4	Float	Value of Selected Variable
	Code	Class	Description
	2	Error	Invalid Selection
	3	Error	Passed parameter is too large
Response Codes	4	Error	Passed parameter is too small
	5	Error	Too few data bytes received
	7	Error	In Write Protect mode

Command 132: Read Byte Variables

This command is used to read a byte variable.

	Byte	Format	Description
Request Data Bytes	0	Enum	Variable Index Number from table 9
Response Data	0	Enum	Variable Index Number from table 9
Bytes	1	Enum	Value of Selected Byte Variable
	Code	Class	Description
Response Codes	2	Error	Invalid Selection
	5	Error	Too few data bytes received

Command 133: Write Byte Variables

This command is used to write the value of a byte variable. The instrument only provides range checking for the Hall drive-current setting and the Number of Meter Decimal Places. All other range checking must be performed in the DD.

	Byte	Format	Description
Request Data	0	Enum	Variable Index Number from table 9
Bytes	1	Enum	Value of Selected Variable
Response Data	0	Enum	Variable Index Number from table 9
Bytes	1	Enum	Value of Selected Variable
	Code	Class	Description
	2	Error	Invalid Selection
Despense Codes	5	Error	Too few data bytes received
Response Codes	7	Error	In Write Protect mode
	15	Error	Invalid Index

Command 134: Read NVM

Command 134 description is included in the proprietary version of this document. Contact your <u>Emerson sales office</u> if additional information is required.

Command 135: Write NVM

Command 135 description is included in the proprietary version of this document. Contact your <u>Emerson sales office</u> if additional information is required.

Command 137: Read Word Variables

This command is used to read Word-size parameters. Range checking must be done outside the instrument. For invalid index numbers, the instrument will return 0 for data. (This command was not utilized in the user interface.)

	Byte	Format	Description
Request Data Bytes	0	Enum	Variable Index Number from table 10
Deen en en Dete	0	Enum	Variable Index Number from table 10
Response Data Bytes	1	Uint8	LS Byte of Word
Dytes	2	Uint8	MS Byte of Word
	Code	Class	Description
Response Codes	2	Error	Invalid Selection

Command 138: Write Word Variables

This command is used to write Word-size parameters. Range checking must be done by the DD. For valid writes, the configuration changed bit will be set. For invalid writes, the bit will not be set. (This command was not utilized in the user interface.)

	Byte	Format	Description
Do succet Data	0	Enum	Variable Index Number from table 10
Request Data Bytes	1	Uint8	LS Byte of Word
bytes	2	Uint8	MS Byte of Word
Designation Detail	0	Enum	Variable Index Number from table 10
Response Data Bytes	1	Uint8	LS Byte of Word
bytes	2	Uint8	MS Byte of Word
	Code	Class	Description
Response Codes	2	Error	Invalid Selection
	9	Error	Passed value too high
	10	Error	Passed value too low

Command 139: Read Serial Number

This command is used to read the instrument or displacer serial number. If the passed index is invalid, the device sets it to 1.

	Byte	Format	Description
Request Data Bytes	0	Enum	Serial Number Index: (0 = Displacer, 1 = Instrument)
Response Data	0	Enum	Serial Number Index
Bytes	1-16	ASCII	Serial Number string
	Code	Class	Description
Response Codes	None		

Command 140: Write Serial Number

This command is used to write the instrument or displacer serial number.

	Byte	Format	Description
Request Data	0	Enum	Serial Number Index: (0 = Displacer, 1 = Instrument)
Bytes	1-16	ASCII	Serial Number string
Response Data	0	Enum	Serial Number Index
Bytes	1-16	ASCII	Serial Number string
	Code	Class	Description
Response Codes	5	Error	Too few data bytes received
	15	Error	Invalid index

Command 142: Read Table Entry

This command is used to read an entry from one of the tables in the instrument. The arguments allow selection of the table, and the row of the table to be read. The instrument returns the pair of data associated with the table entry. Range checking for proper table index and row number must be done in the DD.

	Byte	Format	Description
Request Data	0	Enum	Table Index from table 12
Bytes	1	Uint8	Row Number (0-9)
	0	Enum	Table Index
Response Data	1	Uint8	Row Number
Bytes	2-5	Float	Temperature Value
	6-9	Float	Coefficient Value
	Code	Class	Description
Response Codes	2	Error	Invalid selection
	5	Error	Too few data bytes received

Command 143: Write Table Entry

This command is used to write an entry into a compensation table in the instrument. Arguments allow selection of the table, and the row of the table. If the tables are not full, a column 2 (coefficient value) entry of 0.0 will signal the end of valid data for the table. The DD interface must write the last entry of 0.0 for column 2 to signal the device that the table is complete and can be used for computations, unless the table has valid data in all 10 rows.

	Byte	Format	Description
	0	Enum	Table Index from table 12
Request Data	1	Uint8	Row Number (0-9)
Bytes	2-5	Float	Temperature Value (Column 1 entry)
	6-9	Float	Coefficient Value (Column 2 entry)
	0	Enum	Table Index
Response Data	1	Uint8	Row Number
Bytes	2-5	Float	Temperature Value
	6-9	Float	Coefficient Value
	Code	Class	Description
	2	Error	Invalid selection
	3	Error	Passed parameter too large
Response Codes	4	Error	Passed parameter too small
	5	Error	Too few data bytes received
	15	Error	Invalid row number

Command 144: Read Trend Buffer

This command is used to read trend data from the instrument. See table 6 for trend variable definitions. The trend buffer is zeroed after each read. This results in 'zero' values being displayed for slots that have not had time to be filled with samples since the last read of the buffer. The trend buffer is continuously updated at the trend interval whether it is read or not. (This feature has been removed from the DD in recent revisions, since the available range for trend interval is quite small.)

	Byte	Format	Description
Request Data Bytes	None		
	0	Enum	Gap Flag: 0 = No gap in data since last read 10 = Illegal trend variable specified 11 = Gap in data since last read
Response Data	1-4	Float	First Trend Sample
Bytes	5-8	Float	Second Trend Sample
	9-12	Float	Third Trend Sample
	13-16	Float	Fourth Trend Sample
	17-20	Float	Fifth Trend Sample
	Code	Class	Description
Response Codes.	None		

Command 145: Read Device Alert Parameters

This command is used to read the user-configurable alarm thresholds stored in the instrument. It returns all 4 alarm thresholds for the primary variable, and only the Hi and Lo thresholds for temperature alarms. The Hi-Hi and Lo-Lo thresholds for temperature will return Not-a-Number. Only a single set of alarm threshold variables exist in firmware for the Primary Variable, (i.e., there are not separate values maintained for Interface and Density when Level is the active mode). The values must be edited when the Primary Variable code is changed between (Liquid Level or Interface Level) and Liquid Density, as the measurement has different dimensions.

	Byte	Format	Description
Request Data Bytes	0	Enum	Device Variable Code, see table 5
	0	Enum	Device Variable Code
	1	Enum	Units Code
Response Data	2-5	Float	Hi Alarm Threshold
Bytes	6-9	Float	Hi-Hi Alarm Threshold
	10-13	Float	Lo Alarm Threshold
	14-17	Float	Lo-Lo Alarm Threshold
	Code	Class	Description
Response Codes	2	Error	Invalid selection
	5	Error	Too few databytes received

Command 146: Write Hi Alert

This command is used to write the Hi alert threshold for the specified Device Variable. Range checking must be done in the DD for both range and valid Device Variable code. The Device Variable should be either one of the two temperatures or the current PV variable code.

	Byte	Format	Description
Request Data	0	Enum	Device Variable Code, see table 5
Bytes	1	Enum	Units Code
	2-5	Float	Hi Alert Threshold
Deen on so Data	0	Enum	Device Variable Code
Response Data Bytes	1	Enum	Units Code
Dytes	2-5	Float	Hi Alert Threshold
	Code	Class	Description
	2	Error	Invalid selection
	3	Error	Passed parameter too large
Response Codes.	4	Error	Passed parameter too small
	5	Error	Too few data bytes received
	7	Error	In Write Protect mode
	15	Error	Invalid index

Command 147: Write Hi Hi Alert

This command is used to write the Hi Hi alert threshold for the Primary Variable. Range checking must be done in the DD for both valid PV code and range. Using a variable code that is not the current PV variable code will result in corrupting the alarm threshold values. The Device Variable index used in the request should be the current PV variable code.

	Byte	Format	Description
Request Data	0	Enum	Device Variable Code, see table 5
Bytes	1	Enum	Units Code
	2-5	Float	Hi Hi Alert Threshold
Deen en en Dete	0	Enum	Device Variable Code
Response Data Bytes	1	Enum	Units Code
Dytes	2-5	Float	Hi Hi Alert Threshold
	Code	Class	Description
	2	Error	Invalid selection
	3	Error	Passed parameter too large
Response Codes	4	Error	Passed parameter too small
	5	Error	Too few data bytes received
	7	Error	In Write Protect mode
	15	Error	Invalid index

Command 148: Write Lo Alert

This command is used to write the Lo alert threshold for the specified Device Variable. Range checking must be done in the DD for both range and valid Device Variable code. The Device Variable should be either one of the two temperatures or the current PV variable code.

	Byte	Format	Description
Request Data	0	Enum	Device Variable Code, see table 5
Bytes	1	Enum	Units Code
	2-5	Float	Lo Alert Threshold
	0	Enum	Device Variable Code
Response Data Bytes	1	Enum	Units Code
Dytes	2-5	Float	Lo Alert Threshold
	Code	Class	Description
	2	Error	Invalid selection
	3	Error	Passed parameter too large
Response Codes.	4	Error	Passed parameter too small
	5	Error	Too few data bytes received
	7	Error	In Write Protect mode
	15	Error	Invalid index

Command 149: Write Lo Lo Alert

This command is used to write the Lo Lo alert threshold for the Primary Variable. Range checking must be done in the DD for both valid PV code and range. Using a variable code that is not the current PV variable code will result in corrupting the alarm threshold values. The Device Variable index used in the request should be the current PV variable code.

	Byte	Format	Description
Request Data	0	Enum	Device Variable Code, see table 5
Bytes	1	Enum	Units Code
	2-5	Float	Lo Lo Alert Threshold
Deen on a Dete	0	Enum	Device Variable Code
Response Data Bytes	1	Enum	Units Code
bytes	2-5	Float	Lo Lo Alert Threshold
	Code	Class	Description
	2	Error	Invalid selection
	3	Error	Passed parameter too large
Response Codes.	4	Error	Passed parameter too small
	5	Error	Too few data bytes received
	7	Error	In Write Protect mode
	15	Error	Invalid index

Command 150: Read NVM Remaining

This command returns the number of NVM write counts remaining in each of the three NVM sections. Their type is "unsigned integer".

	Byte	Format	Description
Request Data Bytes	None		
	0-1	Uint16	NVM Writes Remaining in Microprocessor EEPROM
Response Data Bytes	2-3	Uint16	NVM Writes Remaining in On-Board NVM
bytes	4-5	Uint16	NVM Writes Remaining in Transducer Board
	Code	Class	Description
Response Codes	None		

Command 151: Capture Zero Reference Angle

This command is used to mark the current pilot shaft position as the zero (differential) buoyancy reference. The instrument will read the internal variable representing shaft rotation, and store it for use in all measurement calculations.

In Level measurement mode, where the SG value represents the differential density between the upper and lower phase, this command should be issued after the lever assembly has been unlocked, and the displacer is at the lowest buoyancy *process* condition.

In Interface or Density measurement mode, the variable being marked must represent true zero buoyancy. Because of this, it is not possible to use this command effectively with an over-weight displacer in those modes. In this condition, the sensor linkage is on a travel stop at zero buoyancy and does not reflect the full theoretical deflection. The required zero-reference value must be back-computed from two calibration data points, and written explicitly with the Write NVM command.

This command does not check write lock status, although it affects the instrument calibration. It therefore should be used only inside a method in the instrument DD, where write protect status can be enforced explicitly.

	Byte	Format	Description
Request Data Bytes	None		
Response Data Bytes	None		
	Code	Class	Description
Response Codes	None		
Kesponse Codes			

Command 152: Set Write Lock

This command is used to either set or clear the write lock. This command is also sensitive to Primary/Secondary Master status in the message. If a primary master sets write lock, then only a primary master can clear write lock, not a secondary, and vice versa. However, this variable is stored in RAM and will be reset to the OFF condition (writes enabled) after power-up, providing a work-around if the correct master priority is unavailable.

Write lock status is checked by the following:

Universal commands: 6, 17, 18, 19.

Common Practice commands: 34, 35, 36, 37, 40, 44, 45, 46, 51, 53, 59, 108, 109.

Device-Specific commands: 129, 131, 133, 138, 140, 143, 146, 147, 148, 149, (and 152 with respect to a different master hierarchy).

	Byte	Format	Description
Request Data Bytes	0	Enum	Write Lock request: (0 = OFF, 1 = ON)
Response Data Bytes	0	Enum	Write Lock state
	Code	Class	Description
Despanse Codes	2	Error	Invalid selection
Response Codes	16	Error	Access Restricted (Another host has possession of the lock)

Tables

Table 1: DLC3010 HART Response Codes

The following codes represent a sub-set of the HART Response Codes which can be returned by the DLC3010 instrument.

Code	Meaning
0	No command specific errors
2	Invalid Selection
3	Parameter Too Large
4	Parameter Too Small
5	Incorrect Byte Count
7	In Write Protect Mode
8	Data Truncated (warning)
	Lower Range Too High
9	Not in Proper Mode
5	Process Too High
	Zero Range Too High
	Lower Range Too Low
10	Process Too Low
	Zero Range Too Low
	In MultiDrop Mode
	Invalid Variable Code
11	Span Range Too High
	Starting Address Too Low
	Upper Range Too High
12	Starting Address Too High
12	Upper Range Too Low
13	Span Lower Out of Limits
15	Upper/Lower Out of Limits
14	New LRV Pushed URV Over Limit (Warning)
14	Span Too Small (Warning)
15	Invalid Index
16	Access Restricted
32	Busy
64	Command Not Implemented

Table 2a: Device Status

Bit	Name of Status Bit	Meaning
7	Field Device Malfunction	- This bit should be set whenever the firmware detects a serious error or failure that compromises device operation. In DLC3010 firmware 8, the only event that sets it is a time-out during writes to Description or Message, caused by a firmware bug involving an improperly initialized timer. Its functional severity is thus downgraded to advisory.
6	Configuration Changed	Two such bits exist internally, one for each HART master. Both copies are set when any variable, HART message, tag, descriptor or date are changed from HART. Cleared by command 38, separately for each master. This bit survives loss of power. A firmware 8 bug prevents it from being returned to the secondary master.
5	Cold Start	Set by the firmware whenever a RESET sequence is executed or at initial device power up. Cleared by the first HART command. Two such bits exist internally, one for each HART master.
4	More Status	Active when any bit in command 48 is active.
3	Primary Variable Analog Output Fixed	The analog output for the Primary Variable is being held at a fixed value and is not responding to process variations.
2	Primary Variable Analog Output Saturated	The analog output for the Primary Variable has reached its upper (or lower) endpoint limit and cannot increase (or decrease) any further.
1	Non-Primary Variable Out of Limits	A Device Variable not mapped to the Primary Variable is beyond the operating limits of the device. The "Read Additional Transmitter Status" Command, #48, may be required to identify the variable. This bit is the logical OR of the Middle Status Byte, Bits 3 through 0, (Process Temperature and Electronics Temperature Alarms).
0	Primary Variable Out of Limits	Primary Variable is beyond the operating limits of the device.

Table 2b: Additional Status Bytes

Byte	Bit	Name of Status Bit	Meaning
	7	Reserved	
	6	Reserved	
	5	Sensor Signal Failed	The torque tube position reading has exceeded the hard-coded limits, either above or below.
	4	Sensor Drive Failed	The Hall sensor drive current read-back has exceeded the hard-coded limit.
0	3	Reference Voltage Failed	The reference voltage for the A/D has exceeded the hard-coded limits, either above or below.
	2	NVM Write Limit Exceeded	The total number of writes to NVM has exceeded the hard-coded limit. This bit is an OR of all the NVM write limit flags.
	1	Free Time Limit Exceeded	There is insufficient free time remaining in the execution period to complete the scheduled tasks.
	0	Process Temperature Sensor Failed	The apparent resistance measured at the RTD terminals is less than 10 ohms or greater than 320 ohms.
	7	PV Hi Limit Exceeded	Active when user-configured threshold is violated.
	6	PV HiHi Limit Exceeded	Active when user-configured threshold is violated.
	5	PV Lo Limit Exceeded	Active when user-configured threshold is violated.
	4	PV LoLo Limit Exceeded	Active when user-configured threshold is violated.
1	3	Process Temperature Hi Limit Exceeded	Active when user-configured threshold is violated.
	2	Process Temperature Lo Limit Exceeded	Active when user-configured threshold is violated.
	1	Electronics Temperature Hi Limit Exceeded	Active when user-configured threshold is violated.
	0	Electronics Temperature Lo Limit Exceeded	Active when user-configured threshold is violated.
2	All	Reserved	
"Reserved" b	its are alv	vays set to 0	

Table 3: Manufacturer Identification Code

Code	Meaning
19	Fisher Controls

Table 4: Physical Signaling Codes

Code	Meaning
0	Bell 202 Current Mode
1	Bell 202 Voltage Mode

Table 5: DLC3010 Device Variable Codes

(Index for commands 50, 51, 145, 146, 147, 148, 149)

Code	Variable	Class	Unit Codes
0	Liquid Level	None	Length (table 6)
1	Interface Level	None	Length (table 6)
2	Liquid Density	None	Density (table 6)
3	Process Temperature	None	Temperature (table 6)
4	Electronics Temperature	None	Temperature (table 6)

Table 6: DLC3010 Enumeration Codes Length Units

Code	Units
44	feet
45	meters
47	inches
48	centimeters
49	millimeters

Density Units

Code	Units
90	SGU (specific gravity units)
91	grams/cubic centimeter
92	kilograms/cubic meter
93	pounds/gallon
94	pounds/cubic feet
95	grams/milliliter
96	kilograms/liter
97	grams/liter
98	pounds/cubic inch

Temperature Units

Code	Units
32	Centigrade
33	Fahrenheit

Weight Units

Code	Units
60	gram
61	kilogram
63	pound
125	ounce

Volume Units

Code	Units	
41	liter	
113	cubic inches	
240	cubic millimeters	
241	milliliters (cubic	
271	centimeters)	

Torque Rate Units

Code	Units
247	inch pound/degree
248	Newton meter/degree
249	dyne centimeter/degree
<u> </u>	

Sensor Mounting

Code	Meaning	
0	Left of displacer	
1	Right of displacer	

LCD Meter Installation

Code	Meaning	
0	Not installed	
1	Installed	

LCD Meter Display Mode

Code	Meaning	
0	All cells off	
1	All cells on	
2	PV only	
3	Alternate: PV, Proc Temp, Degrees Rotation	
4	Percent only	
5	Alternate: PV, Percent	

Table 6: DLC3010 Enumeration Codes (continued)

LCD Meter Decimal Point

Code	Meaning
0	Autoranging
1	1 digit after decimal point
2	2 digits after decimal point
3	3 digits after decimal point
4	4 digits after decimal point

Trend Variable

Code	Meaning	
0	Trending disabled	
1	Primary Variable	
2	Process temperature	
3	Electronics Temperature	

RTD Type

Code	Meaning	
0	No RTD installed (manual)	
1	2-wire RTD	
2	3-wire RTD	

Hall Sensor Drive Level

Code	Meaning	
0	Low level (≅500 µA)	
1	High level (≅725 µA)	

PV Alert Enable Bits

(1=enabled, 0 = disabled)

Bit Mask	Monitor
0x80	Reserved
0x40	Reserved
0x20	Reserved
0x10	Reserved
0x08	PV Hi
0x04	PV HiHi
0x02	PV Lo
0x01	PV LoLo

Temperature Alert Enable Bits

(1=enabled, 0 = disabled)

· · ·	
Bit Mask	Monitor
0x80	Reserved
0x40	Reserved
0x20	Reserved
0x10	Reserved
0x08	Process Temperature Hi
0x04	Process Temperature Lo
0x02	Electronics Temperature Hi
0x01	Electronics Temperature Lo
0701	Liectionics remperature to

Table 7: DLC3010 Floating Point Variables with Selectable Units(Index for commands 128 and 129)

Code	Parameter
0	Displacer Weight
1	Displacer Volume
2	Displacer Length
3	Moment Arm Length
4	Level Offset
5(1)	Process Temperature
6	Process Temperature Offset
7	Electronics Temperature Offset
8	Torque Tube Rate
1. Process Temperature can only be written when the RTD Type Parameter is set to 0.	

Table 8: DLC3010 Floating Point Variables with Fixed Units (Index for commands 130 and 131)

Code	Parameter	Fixed Units
0(1)	Reference Coupling Point	degrees
1	Trend Interval	seconds
2 ^(1,2,4)	Free Time <i>Limit</i>	%
3(1,4)	Free Time Remaining	%
4	Sensor Drive Limit	μΑ
5(1,2)	Sensor Drive Value	μΑ
6	A/D Reference Limit	counts
7(1,2)	A/D Reference Value	counts
8	Wire Resistance	Ω
9	Input Filter Time Constant	seconds
10(1,3)	A/D Torque Tube Input	mV
11	Reserved	
12	Reserved	
13	Sensor Temp Scale (not used)	
14	Sensor Temp Offset (not used)	
15	Sensor Amp Scale	dimensionless
16	Sensor Amp Offset	counts
17	Sensor Degree Scale	degrees/count
18	Sensor Degree Offset	counts
19 ^(1,3)	Degrees Rotation	degrees
20	Magnet Coefficient	dimensionless
21	Process Temp Scale	dimensionless
2. Items indicat	ed have Read-Only access through this array. ed are dynamic instrument electronics signals mor	

Items indicated are precursors to Device Variables that respond to process conditions.
 These two items have their labels reversed in firmware, as compared to their actual functions.

Table 9: DLC3010 Byte Variables

(Index for commands 132 and 133)

Code	Parameter					
0	Torque Tube Material					
1	Weight Units					
2	Volume Units					
3	Length Units					
4	Sensor Mounting					
5	LCD Meter Installed					
6	LCD Meter Display Mode					
7(1)	LCD Meter Decimal Point					
8	PV Alert Enabled Bit Field					
9	Temperature Alert Enabled Bit Field					
10	Trend Variable Assignment					
11	RTD Type					
12	Torque Rate Units					
13	System A/D Gain Setting					
14	Hall Sensor Drive Signal Level					
1. This parameter can only be written if the value of LCD Meter Installed is Yes.						

Table 10: DLC3010 Word Variables

(index for commands 137 and 138)

Code	Parameter			
0	DAC Zero			
1	DAC Full Scale			
2*	Raw Torque Tube A/D Reading			
3*	Raw Process Temperature A/D Reading			
4*	Raw Electronics Temperature A/D Reading			
5*	s rajusted forque raber qb redding			
* Items indicated with an asterisk are Read-Only, as they are dynamic precursors to Device Variables.				
Items 2-4 are readings from register locations				

Table 11: DLC3010 NVM Storage Locations(index for commands 134 and 135)

Code	Memory Type
1	Main Electronics Board NVM (buffer for FLASH loads)
2	Transducer Board NVM (transducer characterization data)
3	Microprocessor EEPROM (configuration data)
4	Microprocessor Boot-Sector Flash (boot code and working copy of transducer characterization data)

Table 12: DLC3010 Coefficient Tables

(index for commands 142 and 143)

Code	Table Name
	Temperature Coefficient for Specific Gravity of Upper Fluid
1	Temperature Coefficient for Specific Gravity of Lower Fluid
2	Temperature Coefficient for Torque Rate

Table 13: DLC3010 Microprocessor RAM and EEPROM Addresses

DLC3010 Microprocessor RAM and EEPROM addresses are defined in the proprietary version of this document. Contact your <u>Emerson sales office</u> if additional information is required.

Performance

Refer to the DLC3010 Digital Level Controller Instruction Manual (<u>D102748X012</u>) and Product Bulletin 62.1: DLC3010 for details on DLC3010 performance.

Sampling Rates

The DLC3010 Primary Variable (Level | Interface | Density) is normally updated every 100 milliseconds (10 samples per second).

A Secondary or Tertiary variable sample occurs every 500 milliseconds, but the two are alternated. The sample rate for Temperature variables is therefore 1 per second.

When the output current is below about 4.3 mA, the primary variable sample is skipped when one of the Temperature variables is being sampled that cycle. Therefore, at very low current output, the primary variable sample structure is: 4 samples with 100 millisecond separation, followed by a gap of 200 milliseconds.

The output alarm logic is executed every 200 milliseconds.

The PV alarm logic is executed every 500 milliseconds.

The Temperature alarm logic is executed once a second.

The LCD display is updated every second when displaying one variable, and every two seconds when it is displaying alternating variables.

The analog input filtering has a double pole at about 320 Hz.

The Analog to Digital conversion uses a Sigma/Delta device that runs at a bit rate of 28.8 KHz. The first notch of the decimation filter is at 100 Hz for a theoretical update every 10 milliseconds, but the firmware initiates the conversion only once per 100-millisecond interrupt-driven cycle. The settling time for the Sigma-Delta A/D converter in this mode is 30 milliseconds.

Maximum Delay Time estimate for the primary variable: ~ 250 milliseconds.

Power-Up

There is a short inrush current transient expected when power is connected to the device. PV processing begins within 5 seconds. It takes about 1 second for the analog output to settle to 98% of it's commanded value once PV processing has begun. This does not include the input dynamics.

The device does not respond to HART commands until the start-up processing is complete.

Reset

The effect of Command 42 on the the device firmware processing is the same as a power cycle. A reset removes write protection.

Self-Test

No user-discernible effect on processing results from issuing Command 41.

Background self-test functions include:

- Serial EEPROM check sum validation
- Write-count-remaining tracking for each NVM region
- Free time tracking for microprocessor cycle
- Primary Sensor drive current monitoring
- Primary sensor A/D self-calibration
- Primary Sensor input measurement conversion range monitoring
- Primary Value output range monitoring (when enabled)
- RTD resistance measurement conversion range monitoring (when installed)
- Electronics and/or Process temperature range monitoring (when enabled)

Command Response Delay

The device responds to a master request in less than 256 milliseconds (STO @ 1200 bps), as it passed the predecessor of data link layer test DLL024.

Busy and Delayed-Response

In rare instances the device may respond with the code 'Busy' if a write command is still being processed while receiving a new command. Delayed Response mechanisms are not supported by this device.

Long Messages

Device-Specific Commands for NVM access will permit up to 24 byte payloads in addition to the response code / device status bytes. Some legacy HART multiplexers have been known to truncate command packets that exceed 24 bytes.

Non-Volatile Memory

There are three sections of non-volatile memory in the device. They utilize serial EEPROM technology. One is embedded in the microprocessor and stores the configuration and calibration constants for the process algorithm. Another is located on the transducer board and contains characterization data for the Hall Sensor and magnet. The final section is a buffer on the main board used only for firmware loading.

Modes

The device does not support any alternative operating modes other than "Fixed Current" mode, which is used during alarm condition, for multi-drop operation, or for maintenance on the analog output circuit. However, since selection of the PV via command 51 restructures the process measurement algorithm, the device can be said to have 3 different "Measurement" Modes: Liquid Level, Interface Level, or Density.

Write Protection

There are two Write Protection states for the DLC3010: Not Write Protected or Write Protected. 'Protected' prevents configuration and calibration changes to the instrument. The default setting is 'Not Protected'.

Protection is under software control. The method used for rudimentary write protection is a volatile variable written by command 152. Write Protection states can be applied remotely, but to remove protection, the same priority master must be used. If the primary master sets write lock, then only the primary master can clear write lock, not the secondary. A power cycle or device reset will also remove write protection. Write lock status is checked by the following:

Universal commands:	6, 17, 18, 19
Common Practice commands:	34, 35, 36, 37, 40, 44, 45, 46, 51, 53, 59, 108, 109
Device-Specific commands:	129, 131, 133, 138, 140, 143, 146, 147, 148, 149, (and 152 with respect to a different master hierarchy)

Damping

There are two digital filters in the signal path that can be modified by the user. Time Constant can be set between 0 and 16 seconds for each. The PV Damping is applied to the entire PV signal after compensation. The Sensor Damping (Input Filter Time Constant, see code 9 in table 8) is applied only to the Torque Tube signal. It is advisable to use only one of these filters at a time. Selection should be based on the noise level in each signal path.

The breakpoint of the analog output filter following the D/A converter is at about 25 Hz.

Annex A: Compatibility Checklist

Manufacturer, Model, and Revision	Fisher Controls DLC3010 Device Revision1				
Device type	Transmitter, two-wire: Liquid level, Interface Level, or Density				
HART Protocol revision	5.2				
Device Description Available?	Yes				
Number and type of process connections	3: Mechanical / magnetic field for buoyancy sensor, Internal sensor for electronics temperature, 2 or 3 wire RTD connection for process temperature.				
Number and type of host connections	1: 4-20 mA output, Bell 202 FSK				
Number of Device Variables	None exposed, 3 mapped to Dynamic, 5 potential				
Number of Dynamic Variables	3				
Mappable Dynamic Variables?	Yes. (PV is mappable. SV and TV are fixed.)				
Number of Supported Common Practice Commands	18				
Number of Device-Specific Commands	24				
Bits of additional device status	14				
Burst-Mode?	Yes				
Capture Device Variables?	No				
Write protection?	Yes				

Annex B: Default Configuration

Variable	Default Value				
Weight Unit	pound				
Volume Unit	inch ³				
Length Unit	inch				
Torque Rate Unit	lbf*in/degree				
Temperature Unit	degree C				
Displacer Weight	4.75 (pounds)				
Displacer Volume	99. 0 (inch ³)				
Displacer Length	14. 0 (inch)				
Driver Rod Length	8.0 (inch)				
Torque Rate	8.67 (lbf*inch/degree)				
Sensor Mounting	right of displacer				
Zero Reference Angle	0.0 (degree)				
Density of Upper Fluid	0.0 (SGU)				
Density of Lower fluid	1.0 (SGU)				
PV assignment	Liquid Level				
PV Unit	inch				
Level Offset	0.0(inch)				
Upper Range Value	14.0 (inch)				
Lower Range Value	0.0(inch)				

Instruction Manual Supplement

Variable	Default Value				
PV Damping	0.2 (second)				
Input Filter Time Constant	0.0 (second)				
PV Hi Hi Alert Threshold	14.0 (inch)				
PV Hi Alert Threshold	13.3 (inch)				
PV Lo Alert Threshold	0.7 (inch)				
PV Lo Lo Alert Threshold	0.0(inch)				
PV Alert Deadband	0.0(inch)				
Electronics Temperature Alert Hi Threshold	80.0 (degree C)				
Electronics Temperature Alert Lo Threshold	-40.0 (degree C)				
Process Temperature Alert Hi Threshold	232.2 (degree C)				
Process Temperature Alert Lo Threshold	-200.0 (degree C)				
Temperature Alert Deadband	1.0 (degree C)				
PV Alerts	All disabled				
Temperature Alerts	All disabled				
Write Protection	Not Protected				
LCD Meter Installed	Yes				
LCD Meter Decimal Point	1 digit after decimal point				
LCD Meter Display Mode	Alternate: PV, Percent Range				
RTD Type	No RTD Installed				
RTD Wire Resistance	0.0 (Ohms)				
Final Assembly Number	0				
Instrument Serial Number	(nameplate value)				
Displacer Serial Number	(Nameplate value if mounted to sensor, blank otherwise)				
Tag	(blank, or as specified on requisition)				
Descriptor	(blank, or as specified on requisition)				
Date	(Production Date)				
Message	(blank, or as specified on requisition)				
Number of Response Preambles	5				
Number of Request Preambles	5				
Polling Address	0				
Burst Mode	Off				
Burst Command Number	3				

Annex C DLC3010 Parameters as part of a Rosemount 1410 / 1420 WirelessHART Gateway

A FIELDVUE DLC3010 can join a wireless network through the addition of a Rosemount 775 THUM WirelessHART adapter. The wireless adapter acts both as a HART modem for communications coming to the DLC3010 from application software and as an independent master issuing commands periodically to the wired device pertaining to it's status. This independently gathered status information is relayed back to the Rosemount 1410 or 1420 Wireless Gateway and is made available to the user either through viewing the HTML interface or via mapping as "Published Data" parameters via the Gateway's MODBUS or OPC outputs.

The PV, SV, and TV variables and Additional Status bytes can be published by using the following steps.

Configure the THUM as follows:

Navigate to Configure > Manual Setup Under the Wired Device tab select Configure HART Polling

	/- Wired Device	e tab
107/16/2014 14:49:04.840 [THUM]	1 Adapter Rev. 1]	_0
File Actions Help		
<u>sa x</u>	¥	
Configure	Wireless Wired Device Electronics Temperature THUM Information C	Other
E Guided Setup	-Smart Power Options	
Manual Setup	4-20 mA Current Standard 4-20 mA.	Optimize THUM for available loop current: Variable Current Mode = 3.5 to 25 mA High Current Mode >= 15 mA
	Voltage Drop Variable Voltage Drop	Optimize THUM for available voltage: Variable = 2.5 Volts or less Fixed = 2.5 Volts
	-Wired Device Discovery Mode	Set how THUM detects wired devices.
	Poling Address	
Overview	Configure HART Poling	Set HART commands that the wired device reports.
Configure		
ß		
	Time: Current	Send Close Help
Device last synchronized: 7/18/2014 9:20	:45 AM	

FOR PRIMARY DEVICE INFORMATION: Select PV, SV, TV, and QV

igure HART Polling	
nfigure HART Polling	
Dieace celect the pri	mary device information you would like the THUM
to transmit from list l	
Primary Information T	vpe
PV, SV, TV, and QV	
PV Only	
Percent of Range	
PV, SV, TV, and QV	
Process Variables w	ith Variable Status
Process Variables	
Device Status	
Custom	

Select Yes if changes are required

Configure HART Polling	<u>? ×</u>
Configure HART Polling	
The THUM may transmit two types of information from the wired device.	
Below is the current information that the THUM will transmit from the primary device.	
Process Variables with Variable Status	
Device Status	
Would you like to change this information?	
Yes No Cancel H	elp

FOR SECONDARY DEVICE INFORMATION: Select Device Status

The FIELDVUE instrument is defined on the Gateway by "Tag" (read from the device's "Message" field).

Smart Wireless Gateway

For each Tag, the Gateway provides updated values for:

- Process Variables
- Additional Status
- Published Data

wihartgw 10.208.38.53	lome Devices	System Settings					+ Network Information
All Devices 13	#	Live 13	**	Unreachat	ble	Pow 0	ver Module Low
Devices 5	*	Live	*	Name	(A-Z)		UNIT 🗶
Name	PV	sv	TV		QV		Last Update
🗁 🗹 UNIT UNDER TEST	✓ 11.988 in	79.129	DegF 🗸	419.17 DegF	NaN		10/25/17 15:26:10
Diagnostics		1					
State	Last Join	То	otal Joins	N	Network Reliability	Pa	ath Stability
Live Last Update: 10/25/17 15:26:10	10/25/17 12:29:5	2 1		1	00 %	10	0 %
Process Variables							
PV	sv		TV			QV	
Good 11.988 in	Goo	d 79.129 DegF	~ e	Good 419.17 De	egF	Good N	laN
+ Detailed Device Information							

Published Data, used for the Gateway's OPC and Modbus outputs, falls into the following categories:

Field Device Identification Values:

Values that define the identity of the DLC3010. These include:

- MANUFACTURER (for "Fisher Controls" the value is "19")
- DEVICE_TYPE (for a DLC3010 the value is "4")
- DEVICE_REVISION
- HARDWARE_REVISION
- SOFTWARE_REVISION
- DEVICE_ID
- UNIVERSAL_REVISION (HART version)
- REQUEST_PREAMBLES
- RESPONSE PREAMBLES

Variable information:

The Gateway receives updates concerning the DLC3010's configured Dynamic Variables. The information for any given variable is displayed by Dynamic Variable indicator ("PV", "SV", "TV", etc.).

Designation	Variable ID	Assignment
PV	0	Liquid Level
	1	Interface Level
	2	Density
SV	4	Electronics Temperature
TV	3	Process Temperature
CURRENT	245	Loop Current
QV	249	(Not Used)

Any of these choices of Dynamic Variable number or designation above can be substituted for the "#" sign in the Variable Identifier fields below.

Variable Identifier	Comments / Explanation
#	See any of the variable identifiers in the table immediately above
#_CLASS	Always "0" (No Class assigned)
#_CODE	The "Device Variable ID" number in the table immediately above
#_HEALTHY	A "true" or "false" indication of the health of the sensor providing this value
#_STATUS	Always "192". (Device Variable Status is not defined at HART 5)
#_UNITS	Decimal "Variable Units Code" number from the "Units Codes" sections of table 6

Device Status:

The eight standard status conditions (present in ANY HART field device) are all represented by a Boolean "true" or "false" state. These eight conditions, discussed in table 2a, are:

- DEVICE_MALFUNCTION
- CONFIGURATION_CHANGED
- COLD_START
- MORE_STATUS_AVAILABLE
- LOOP_CURRENT_FIXED
- LOOP_CURRENT_SATURATED
- NONPRIMARY_VALUE_OUT_OF_LIMITS
- PRIMARY_VALUE_OUT_OF_LIMITS

Detailed Device Alerts:

The Alert Groupings are:

- ADDITIONAL_STATUS_0
- ADDITIONAL_STATUS_1
- ADDITIONAL_STATUS_2

Each of these status bytes represent eight individual bits with values that range from "00" to "255". To determine which of the eight bits are active requires converting a decimal value to its binary equivalent value. Refer to Command 48 and table 2b for details on the individual alert bits inside of each Additional Status Byte.

Neither Emerson, Emerson Automation Solutions, nor any of their affiliated entities assumes responsibility for the selection, use or maintenance of any product. Responsibility for proper selection, use, and maintenance of any product remains solely with the purchaser and end user.

Fisher, FIELDVUE, and Rosemount are marks owned by one of the companies in the Emerson Automation Solutions business unit of Emerson Electric Co. Emerson Automation Solutions, Emerson, and the Emerson logo are trademarks and service marks of Emerson Electric Co. HART and *Wireless*HART are registered trademarks of FieldComm Group. All other marks are the property of their respective owners.

The contents of this publication are presented for informational purposes only, and while every effort has been made to ensure their accuracy, they are not to be construed as warranties or guarantees, express or implied, regarding the products or services described herein or their use or applicability. All sales are governed by our terms and conditions, which are available upon request. We reserve the right to modify or improve the designs or specifications of such products at any time without notice.

Emerson Automation Solutions Marshalltown, Iowa 50158 USA Sorocaba, 18087 Brazil Cernay, 68700 France Dubai, United Arab Emirates Singapore 128461 Singapore

www.Fisher.com

